test_kitti_dataset.py 19.5 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import math
yinchimaoliang's avatar
yinchimaoliang committed
3
import numpy as np
xiliu8006's avatar
xiliu8006 committed
4
import os
yinchimaoliang's avatar
yinchimaoliang committed
5
import pytest
xiliu8006's avatar
xiliu8006 committed
6
import tempfile
yinchimaoliang's avatar
yinchimaoliang committed
7
8
import torch

9
from mmdet3d.core.bbox import LiDARInstance3DBoxes, limit_period
yinchimaoliang's avatar
yinchimaoliang committed
10
11
12
from mmdet3d.datasets import KittiDataset


xiliu8006's avatar
xiliu8006 committed
13
def _generate_kitti_dataset_config():
yinchimaoliang's avatar
yinchimaoliang committed
14
15
16
17
    data_root = 'tests/data/kitti'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    classes = ['Pedestrian', 'Cyclist', 'Car']
    pts_prefix = 'velodyne_reduced'
xiliu8006's avatar
xiliu8006 committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(
            type='MultiScaleFlipAug3D',
            img_scale=(1333, 800),
            pts_scale_ratio=1,
            flip=False,
            transforms=[
                dict(
                    type='GlobalRotScaleTrans',
                    rot_range=[0, 0],
                    scale_ratio_range=[1.0, 1.0],
                    translation_std=[0, 0, 0]),
                dict(type='RandomFlip3D'),
                dict(
                    type='PointsRangeFilter',
                    point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
                dict(
                    type='DefaultFormatBundle3D',
42
                    class_names=classes,
xiliu8006's avatar
xiliu8006 committed
43
44
45
46
47
                    with_label=False),
                dict(type='Collect3D', keys=['points'])
            ])
    ]
    modality = dict(use_lidar=True, use_camera=False)
yinchimaoliang's avatar
yinchimaoliang committed
48
    split = 'training'
xiliu8006's avatar
xiliu8006 committed
49
50
51
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def _generate_kitti_multi_modality_dataset_config():
    data_root = 'tests/data/kitti'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    classes = ['Pedestrian', 'Cyclist', 'Car']
    pts_prefix = 'velodyne_reduced'
    img_norm_cfg = dict(
        mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(type='LoadImageFromFile'),
        dict(
            type='MultiScaleFlipAug3D',
            img_scale=(1333, 800),
            pts_scale_ratio=1,
            flip=False,
            transforms=[
                dict(type='Resize', multiscale_mode='value', keep_ratio=True),
                dict(
                    type='GlobalRotScaleTrans',
                    rot_range=[0, 0],
                    scale_ratio_range=[1., 1.],
                    translation_std=[0, 0, 0]),
                dict(type='RandomFlip3D'),
                dict(type='Normalize', **img_norm_cfg),
                dict(type='Pad', size_divisor=32),
                dict(
                    type='PointsRangeFilter',
                    point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
                dict(
                    type='DefaultFormatBundle3D',
                    class_names=classes,
                    with_label=False),
                dict(type='Collect3D', keys=['points', 'img'])
            ])
    ]
    modality = dict(use_lidar=True, use_camera=True)
    split = 'training'
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


xiliu8006's avatar
xiliu8006 committed
97
98
def test_getitem():
    np.random.seed(0)
99
100
    data_root, ann_file, classes, pts_prefix, \
        _, modality, split = _generate_kitti_dataset_config()
xiliu8006's avatar
xiliu8006 committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4,
            file_client_args=dict(backend='disk')),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            file_client_args=dict(backend='disk')),
        dict(
            type='ObjectSample',
            db_sampler=dict(
                data_root='tests/data/kitti/',
117
                # in coordinate system refactor, this test file is modified
xiliu8006's avatar
xiliu8006 committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
                info_path='tests/data/kitti/kitti_dbinfos_train.pkl',
                rate=1.0,
                prepare=dict(
                    filter_by_difficulty=[-1],
                    filter_by_min_points=dict(Pedestrian=10)),
                classes=['Pedestrian', 'Cyclist', 'Car'],
                sample_groups=dict(Pedestrian=6))),
        dict(
            type='ObjectNoise',
            num_try=100,
            translation_std=[1.0, 1.0, 0.5],
            global_rot_range=[0.0, 0.0],
            rot_range=[-0.78539816, 0.78539816]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.78539816, 0.78539816],
            scale_ratio_range=[0.95, 1.05]),
        dict(
            type='PointsRangeFilter',
            point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
        dict(
            type='ObjectRangeFilter',
            point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
        dict(type='PointShuffle'),
        dict(
            type='DefaultFormatBundle3D',
            class_names=['Pedestrian', 'Cyclist', 'Car']),
        dict(
            type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
    ]
149
150
151
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
    data = kitti_dataset[0]
yinchimaoliang's avatar
yinchimaoliang committed
152
153
154
155
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels_3d = data['gt_labels_3d']._data
    expected_gt_bboxes_3d = torch.tensor(
156
        [[9.5081, -5.2269, -1.1370, 1.2288, 0.4915, 1.9353, 1.9988]])
yinchimaoliang's avatar
yinchimaoliang committed
157
    expected_gt_labels_3d = torch.tensor([0])
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    rot_matrix = data['img_metas']._data['pcd_rotation']
    rot_angle = data['img_metas']._data['pcd_rotation_angle']
    horizontal_flip = data['img_metas']._data['pcd_horizontal_flip']
    vertical_flip = data['img_metas']._data['pcd_vertical_flip']
    expected_rot_matrix = torch.tensor([[0.8018, 0.5976, 0.0000],
                                        [-0.5976, 0.8018, 0.0000],
                                        [0.0000, 0.0000, 1.0000]])
    expected_rot_angle = 0.6404654291602163
    noise_angle = 0.20247319
    assert torch.allclose(expected_rot_matrix, rot_matrix, atol=1e-4)
    assert math.isclose(expected_rot_angle, rot_angle, abs_tol=1e-4)
    assert horizontal_flip is True
    assert vertical_flip is False

    # after coord system refactor
    expected_gt_bboxes_3d[:, :3] = \
        expected_gt_bboxes_3d[:, :3] @ rot_matrix @ rot_matrix
    expected_gt_bboxes_3d[:, -1:] = -np.pi - expected_gt_bboxes_3d[:, -1:] \
        + 2 * rot_angle - 2 * noise_angle
    expected_gt_bboxes_3d[:, -1:] = limit_period(
        expected_gt_bboxes_3d[:, -1:], period=np.pi * 2)
yinchimaoliang's avatar
yinchimaoliang committed
179
180
181
182
183
    assert points.shape == (780, 4)
    assert torch.allclose(
        gt_bboxes_3d.tensor, expected_gt_bboxes_3d, atol=1e-4)
    assert torch.all(gt_labels_3d == expected_gt_labels_3d)

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    # test multi-modality KITTI dataset
    np.random.seed(0)
    point_cloud_range = [0, -40, -3, 70.4, 40, 1]
    img_norm_cfg = dict(
        mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
    multi_modality_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4),
        dict(type='LoadImageFromFile'),
        dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
        dict(
            type='Resize',
            img_scale=[(640, 192), (2560, 768)],
            multiscale_mode='range',
            keep_ratio=True),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.78539816, 0.78539816],
            scale_ratio_range=[0.95, 1.05],
            translation_std=[0.2, 0.2, 0.2]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='PointShuffle'),
        dict(type='Normalize', **img_norm_cfg),
        dict(type='Pad', size_divisor=32),
        dict(type='DefaultFormatBundle3D', class_names=classes),
        dict(
            type='Collect3D',
            keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d']),
    ]
    modality = dict(use_lidar=True, use_camera=True)
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 multi_modality_pipeline, classes, modality)
    data = kitti_dataset[0]
    img = data['img']._data
    lidar2img = data['img_metas']._data['lidar2img']

    expected_lidar2img = np.array(
        [[6.02943726e+02, -7.07913330e+02, -1.22748432e+01, -1.70942719e+02],
         [1.76777252e+02, 8.80879879e+00, -7.07936157e+02, -1.02568634e+02],
         [9.99984801e-01, -1.52826728e-03, -5.29071223e-03, -3.27567995e-01],
         [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])

    assert img.shape[:] == (3, 416, 1344)
    assert np.allclose(lidar2img, expected_lidar2img)

yinchimaoliang's avatar
yinchimaoliang committed
234
235
236
237

def test_evaluate():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
238
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
239
        pipeline, modality, split = _generate_kitti_dataset_config()
240
241
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
242
243
244
245
246
247
248
249
250
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    metric = ['mAP']
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
251
    ap_dict = kitti_dataset.evaluate([result], metric)
yinchimaoliang's avatar
yinchimaoliang committed
252
253
254
255
256
257
258
259
260
261
    assert np.isclose(ap_dict['KITTI/Overall_3D_easy'], 3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_moderate'], 3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_hard'], 3.0303030303030307)


def test_show():
    import mmcv
    from os import path as osp

    from mmdet3d.core.bbox import LiDARInstance3DBoxes
262
263
264
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
265
        pipeline, modality, split = _generate_kitti_dataset_config()
yinchimaoliang's avatar
yinchimaoliang committed
266
267
268
269
270
271
272
273
274
275
276
277
278
    kitti_dataset = KittiDataset(
        data_root, ann_file, split=split, modality=modality, pipeline=pipeline)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
279
    kitti_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
280
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
281
282
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
283
284
285
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
286
287
    tmp_dir.cleanup()

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    # test show with pipeline
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4),
        dict(
            type='DefaultFormatBundle3D',
            class_names=classes,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    kitti_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    # test multi-modality show
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    _, _, _, _, multi_modality_pipeline, modality, _ = \
        _generate_kitti_multi_modality_dataset_config()
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 multi_modality_pipeline, classes, modality)
    kitti_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
    img_file_path = osp.join(temp_dir, '000000', '000000_img.png')
    img_pred_path = osp.join(temp_dir, '000000', '000000_pred.png')
    img_gt_file = osp.join(temp_dir, '000000', '000000_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()
yinchimaoliang's avatar
yinchimaoliang committed
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    # test multi-modality show with pipeline
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=4,
            use_dim=4),
        dict(type='LoadImageFromFile'),
        dict(
            type='DefaultFormatBundle3D',
            class_names=classes,
            with_label=False),
        dict(type='Collect3D', keys=['points', 'img'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    kitti_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
    gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
    img_file_path = osp.join(temp_dir, '000000', '000000_img.png')
    img_pred_path = osp.join(temp_dir, '000000', '000000_pred.png')
    img_gt_file = osp.join(temp_dir, '000000', '000000_gt.png')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    mmcv.check_file_exist(img_file_path)
    mmcv.check_file_exist(img_pred_path)
    mmcv.check_file_exist(img_gt_file)
    tmp_dir.cleanup()

yinchimaoliang's avatar
yinchimaoliang committed
365
366
367

def test_format_results():
    from mmdet3d.core.bbox import LiDARInstance3DBoxes
368
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
369
        pipeline, modality, split = _generate_kitti_dataset_config()
370
371
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
372
    # coord system refactor
yinchimaoliang's avatar
yinchimaoliang committed
373
374
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
375
            [[8.7314, -1.8559, -1.5997, 1.2000, 0.4800, 1.8900, -1.5808]]))
yinchimaoliang's avatar
yinchimaoliang committed
376
377
378
379
380
381
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [result]
382
    result_files, tmp_dir = kitti_dataset.format_results(results)
yinchimaoliang's avatar
yinchimaoliang committed
383
384
385
    expected_name = np.array(['Pedestrian'])
    expected_truncated = np.array([0.])
    expected_occluded = np.array([0])
386
387
    # coord sys refactor
    expected_alpha = np.array(-3.3410306 + np.pi)
yinchimaoliang's avatar
yinchimaoliang committed
388
389
390
    expected_bbox = np.array([[710.443, 144.00221, 820.29114, 307.58667]])
    expected_dimensions = np.array([[1.2, 1.89, 0.48]])
    expected_location = np.array([[1.8399826, 1.4700007, 8.410018]])
391
    expected_rotation_y = np.array([0.0100])
yinchimaoliang's avatar
yinchimaoliang committed
392
393
394
395
396
    expected_score = np.array([0.5])
    expected_sample_idx = np.array([0])
    assert np.all(result_files[0]['name'] == expected_name)
    assert np.allclose(result_files[0]['truncated'], expected_truncated)
    assert np.all(result_files[0]['occluded'] == expected_occluded)
397
    assert np.allclose(result_files[0]['alpha'], expected_alpha, 1e-3)
yinchimaoliang's avatar
yinchimaoliang committed
398
399
400
    assert np.allclose(result_files[0]['bbox'], expected_bbox)
    assert np.allclose(result_files[0]['dimensions'], expected_dimensions)
    assert np.allclose(result_files[0]['location'], expected_location)
401
402
    assert np.allclose(result_files[0]['rotation_y'], expected_rotation_y,
                       1e-3)
yinchimaoliang's avatar
yinchimaoliang committed
403
404
    assert np.allclose(result_files[0]['score'], expected_score)
    assert np.allclose(result_files[0]['sample_idx'], expected_sample_idx)
405
    tmp_dir.cleanup()
yinchimaoliang's avatar
yinchimaoliang committed
406
407


xiliu8006's avatar
xiliu8006 committed
408
def test_bbox2result_kitti():
409
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
410
        pipeline, modality, split = _generate_kitti_dataset_config()
411
412
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
xiliu8006's avatar
xiliu8006 committed
413
414
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
415
            [[8.7314, -1.8559, -1.5997, 1.2000, 0.4800, 1.8900, -1.5808]]))
xiliu8006's avatar
xiliu8006 committed
416
417
418
419
420
421
    labels_3d = torch.tensor([
        0,
    ])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [result]
422
423
424
    tmp_dir = tempfile.TemporaryDirectory()
    temp_kitti_result_dir = tmp_dir.name
    det_annos = kitti_dataset.bbox2result_kitti(
xiliu8006's avatar
xiliu8006 committed
425
426
427
428
        results, classes, submission_prefix=temp_kitti_result_dir)
    expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
    expected_name = np.array(['Pedestrian'])
    expected_dimensions = np.array([1.2000, 1.8900, 0.4800])
429
430
    # coord system refactor (reverse sign)
    expected_rotation_y = 0.0100
xiliu8006's avatar
xiliu8006 committed
431
432
    expected_score = np.array([0.5])
    assert np.all(det_annos[0]['name'] == expected_name)
433
    assert np.allclose(det_annos[0]['rotation_y'], expected_rotation_y, 1e-3)
xiliu8006's avatar
xiliu8006 committed
434
435
436
    assert np.allclose(det_annos[0]['score'], expected_score)
    assert np.allclose(det_annos[0]['dimensions'], expected_dimensions)
    assert os.path.exists(expected_file_path)
437
    tmp_dir.cleanup()
xiliu8006's avatar
xiliu8006 committed
438

439
440
    tmp_dir = tempfile.TemporaryDirectory()
    temp_kitti_result_dir = tmp_dir.name
xiliu8006's avatar
xiliu8006 committed
441
442
443
444
445
446
    boxes_3d = LiDARInstance3DBoxes(torch.tensor([]))
    labels_3d = torch.tensor([])
    scores_3d = torch.tensor([])
    empty_result = dict(
        boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    results = [empty_result]
447
    det_annos = kitti_dataset.bbox2result_kitti(
xiliu8006's avatar
xiliu8006 committed
448
449
450
        results, classes, submission_prefix=temp_kitti_result_dir)
    expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
    assert os.path.exists(expected_file_path)
451
    tmp_dir.cleanup()
xiliu8006's avatar
xiliu8006 committed
452
453


yinchimaoliang's avatar
yinchimaoliang committed
454
def test_bbox2result_kitti2d():
455
    data_root, ann_file, classes, pts_prefix, \
xiliu8006's avatar
xiliu8006 committed
456
        pipeline, modality, split = _generate_kitti_dataset_config()
457
458
    kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
yinchimaoliang's avatar
yinchimaoliang committed
459
460
461
462
    bboxes = np.array([[[46.1218, -4.6496, -0.9275, 0.5316, 0.5],
                        [33.3189, 0.1981, 0.3136, 0.5656, 0.5]],
                       [[46.1366, -4.6404, -0.9510, 0.5162, 0.5],
                        [33.2646, 0.2297, 0.3446, 0.5746, 0.5]]])
463
    det_annos = kitti_dataset.bbox2result_kitti2d([bboxes], classes)
yinchimaoliang's avatar
yinchimaoliang committed
464
465
466
467
468
469
470
471
472
473
    expected_name = np.array(
        ['Pedestrian', 'Pedestrian', 'Cyclist', 'Cyclist'])
    expected_bbox = np.array([[46.1218, -4.6496, -0.9275, 0.5316],
                              [33.3189, 0.1981, 0.3136, 0.5656],
                              [46.1366, -4.6404, -0.951, 0.5162],
                              [33.2646, 0.2297, 0.3446, 0.5746]])
    expected_score = np.array([0.5, 0.5, 0.5, 0.5])
    assert np.all(det_annos[0]['name'] == expected_name)
    assert np.allclose(det_annos[0]['bbox'], expected_bbox)
    assert np.allclose(det_annos[0]['score'], expected_score)