update_infos_to_v2.py 48.6 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
# Copyright (c) OpenMMLab. All rights reserved.
"""Convert the annotation pkl to the standard format in OpenMMLab V2.0.

Example:
5
    python tools/dataset_converters/update_infos_to_v2.py
VVsssssk's avatar
VVsssssk committed
6
        --dataset kitti
7
        --pkl-path ./data/kitti/kitti_infos_train.pkl
jshilong's avatar
jshilong committed
8
9
10
11
12
13
14
        --out-dir ./kitti_v2/
"""

import argparse
import copy
import time
from os import path as osp
15
from pathlib import Path
jshilong's avatar
jshilong committed
16

17
import mmengine
jshilong's avatar
jshilong committed
18
import numpy as np
ZCMax's avatar
ZCMax committed
19
from nuscenes.nuscenes import NuScenes
jshilong's avatar
jshilong committed
20

21
22
23
from mmdet3d.datasets.convert_utils import (convert_annos,
                                            get_kitti_style_2d_boxes,
                                            get_nuscenes_2d_boxes)
VVsssssk's avatar
VVsssssk committed
24
from mmdet3d.datasets.utils import convert_quaternion_to_matrix
zhangshilong's avatar
zhangshilong committed
25
from mmdet3d.structures import points_cam2img
VVsssssk's avatar
VVsssssk committed
26

jshilong's avatar
jshilong committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

def get_empty_instance():
    """Empty annotation for single instance."""
    instance = dict(
        # (list[float], required): list of 4 numbers representing
        # the bounding box of the instance, in (x1, y1, x2, y2) order.
        bbox=None,
        # (int, required): an integer in the range
        # [0, num_categories-1] representing the category label.
        bbox_label=None,
        #  (list[float], optional): list of 7 (or 9) numbers representing
        #  the 3D bounding box of the instance,
        #  in [x, y, z, w, h, l, yaw]
        #  (or [x, y, z, w, h, l, yaw, vx, vy]) order.
        bbox_3d=None,
        # (bool, optional): Whether to use the
        # 3D bounding box during training.
        bbox_3d_isvalid=None,
        # (int, optional): 3D category label
        # (typically the same as label).
        bbox_label_3d=None,
        # (float, optional): Projected center depth of the
        # 3D bounding box compared to the image plane.
        depth=None,
        #  (list[float], optional): Projected
        #  2D center of the 3D bounding box.
        center_2d=None,
        # (int, optional): Attribute labels
        # (fine-grained labels such as stopping, moving, ignore, crowd).
        attr_label=None,
        # (int, optional): The number of LiDAR
        # points in the 3D bounding box.
        num_lidar_pts=None,
        # (int, optional): The number of Radar
        # points in the 3D bounding box.
        num_radar_pts=None,
        # (int, optional): Difficulty level of
        # detecting the 3D bounding box.
        difficulty=None,
        unaligned_bbox_3d=None)
    return instance


70
def get_empty_multicamera_instances(camera_types):
ZCMax's avatar
ZCMax committed
71

72
73
74
    cam_instance = dict()
    for cam_type in camera_types:
        cam_instance[cam_type] = None
ZCMax's avatar
ZCMax committed
75
76
77
    return cam_instance


jshilong's avatar
jshilong committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def get_empty_lidar_points():
    lidar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of LiDAR data file.
        lidar_path=None,
        # (list[list[float]], optional): Transformation matrix
        # from lidar to ego-vehicle
        # with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        lidar2ego=None,
    )
    return lidar_points


def get_empty_radar_points():
    radar_points = dict(
        # (int, optional) : Number of features for each point.
        num_pts_feats=None,
        # (str, optional): Path of RADAR data file.
        radar_path=None,
        # Transformation matrix from lidar to
        # ego-vehicle with shape [4, 4].
        # (Referenced camera coordinate system is ego in KITTI.)
        radar2ego=None,
    )
    return radar_points


def get_empty_img_info():
    img_info = dict(
        # (str, required): the path to the image file.
        img_path=None,
        # (int) The height of the image.
        height=None,
        # (int) The width of the image.
        width=None,
        # (str, optional): Path of the depth map file
        depth_map=None,
        # (list[list[float]], optional) : Transformation
        # matrix from camera to image with
        # shape [3, 3], [3, 4] or [4, 4].
        cam2img=None,
121
122
123
        # (list[list[float]]): Transformation matrix from lidar
        # or depth to image with shape [4, 4].
        lidar2img=None,
jshilong's avatar
jshilong committed
124
125
126
127
128
129
130
        # (list[list[float]], optional) : Transformation
        # matrix from camera to ego-vehicle
        # with shape [4, 4].
        cam2ego=None)
    return img_info


131
def get_single_image_sweep(camera_types):
jshilong's avatar
jshilong committed
132
133
134
135
136
    single_image_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
137
138
139
140
141
142
        ego2global=None)
    # (dict): Information of images captured by multiple cameras
    images = dict()
    for cam_type in camera_types:
        images[cam_type] = get_empty_img_info()
    single_image_sweep['images'] = images
jshilong's avatar
jshilong committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    return single_image_sweep


def get_single_lidar_sweep():
    single_lidar_sweep = dict(
        # (float, optional) : Timestamp of the current frame.
        timestamp=None,
        # (list[list[float]], optional) : Transformation matrix
        # from ego-vehicle to the global
        ego2global=None,
        # (dict): Information of images captured by multiple cameras
        lidar_points=get_empty_lidar_points())
    return single_lidar_sweep


VVsssssk's avatar
VVsssssk committed
158
159
def get_empty_standard_data_info(
        camera_types=['CAM0', 'CAM1', 'CAM2', 'CAM3', 'CAM4']):
jshilong's avatar
jshilong committed
160
161
162

    data_info = dict(
        # (str): Sample id of the frame.
163
        sample_idx=None,
jshilong's avatar
jshilong committed
164
165
        # (str, optional): '000010'
        token=None,
166
        **get_single_image_sweep(camera_types),
jshilong's avatar
jshilong committed
167
168
169
170
171
172
173
174
        # (dict, optional): dict contains information
        # of LiDAR point cloud frame.
        lidar_points=get_empty_lidar_points(),
        # (dict, optional) Each dict contains
        # information of Radar point cloud frame.
        radar_points=get_empty_radar_points(),
        # (list[dict], optional): Image sweeps data.
        image_sweeps=[],
VVsssssk's avatar
VVsssssk committed
175
        lidar_sweeps=[],
jshilong's avatar
jshilong committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        instances=[],
        # (list[dict], optional): Required by object
        # detection, instance  to be ignored during training.
        instances_ignore=[],
        # (str, optional): Path of semantic labels for each point.
        pts_semantic_mask_path=None,
        # (str, optional): Path of instance labels for each point.
        pts_instance_mask_path=None)
    return data_info


def clear_instance_unused_keys(instance):
    keys = list(instance.keys())
    for k in keys:
        if instance[k] is None:
            del instance[k]
    return instance


def clear_data_info_unused_keys(data_info):
    keys = list(data_info.keys())
    empty_flag = True
    for key in keys:
        # we allow no annotations in datainfo
200
        if key in ['instances', 'cam_sync_instances', 'cam_instances']:
jshilong's avatar
jshilong committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
            empty_flag = False
            continue
        if isinstance(data_info[key], list):
            if len(data_info[key]) == 0:
                del data_info[key]
            else:
                empty_flag = False
        elif data_info[key] is None:
            del data_info[key]
        elif isinstance(data_info[key], dict):
            _, sub_empty_flag = clear_data_info_unused_keys(data_info[key])
            if sub_empty_flag is False:
                empty_flag = False
            else:
                # sub field is empty
                del data_info[key]
        else:
            empty_flag = False

    return data_info, empty_flag


223
def generate_nuscenes_camera_instances(info, nusc):
ZCMax's avatar
ZCMax committed
224
225
226
227
228
229
230
231
232
233
234

    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]

235
    empty_multicamera_instance = get_empty_multicamera_instances(camera_types)
ZCMax's avatar
ZCMax committed
236
237
238
239

    for cam in camera_types:
        cam_info = info['cams'][cam]
        # list[dict]
240
        ann_infos = get_nuscenes_2d_boxes(
ZCMax's avatar
ZCMax committed
241
242
243
244
245
246
247
248
            nusc,
            cam_info['sample_data_token'],
            visibilities=['', '1', '2', '3', '4'])
        empty_multicamera_instance[cam] = ann_infos

    return empty_multicamera_instance


VVsssssk's avatar
VVsssssk committed
249
def update_nuscenes_infos(pkl_path, out_dir):
250
251
252
253
254
255
256
257
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]
VVsssssk's avatar
VVsssssk committed
258
259
260
261
262
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
263
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
264
    METAINFO = {
265
        'classes':
VVsssssk's avatar
VVsssssk committed
266
267
268
        ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
         'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
    }
ZCMax's avatar
ZCMax committed
269
270
271
272
273
    nusc = NuScenes(
        version=data_list['metadata']['version'],
        dataroot='./data/nuscenes',
        verbose=True)

VVsssssk's avatar
VVsssssk committed
274
275
276
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
277
            mmengine.track_iter_progress(data_list['infos'])):
278
279
        temp_data_info = get_empty_standard_data_info(
            camera_types=camera_types)
VVsssssk's avatar
VVsssssk committed
280
281
282
283
284
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
285
286
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
            'num_features', 5)
287
288
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['lidar_path']).name
VVsssssk's avatar
VVsssssk committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
305
306
307
            rot = ori_sweep['sensor2lidar_rotation']
            trans = ori_sweep['sensor2lidar_translation']
            lidar2sensor[:3, :3] = rot.T
308
            lidar2sensor[:3, 3:4] = -1 * np.matmul(rot.T, trans.reshape(3, 1))
VVsssssk's avatar
VVsssssk committed
309
310
311
312
313
314
315
316
317
318
319
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
320
321
            empty_img_info['img_path'] = Path(
                ori_info_dict['cams'][cam]['data_path']).name
VVsssssk's avatar
VVsssssk committed
322
323
324
325
326
327
328
329
330
331
332
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
333
334
335
            rot = ori_info_dict['cams'][cam]['sensor2lidar_rotation']
            trans = ori_info_dict['cams'][cam]['sensor2lidar_translation']
            lidar2sensor[:3, :3] = rot.T
336
            lidar2sensor[:3, 3:4] = -1 * np.matmul(rot.T, trans.reshape(3, 1))
VVsssssk's avatar
VVsssssk committed
337
338
339
340
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        ignore_class_name = set()
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        if 'gt_boxes' in ori_info_dict:
            num_instances = ori_info_dict['gt_boxes'].shape[0]
            for i in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                    i, :].tolist()
                if ori_info_dict['gt_names'][i] in METAINFO['classes']:
                    empty_instance['bbox_label'] = METAINFO['classes'].index(
                        ori_info_dict['gt_names'][i])
                else:
                    ignore_class_name.add(ori_info_dict['gt_names'][i])
                    empty_instance['bbox_label'] = -1
                empty_instance['bbox_label_3d'] = copy.deepcopy(
                    empty_instance['bbox_label'])
                empty_instance['velocity'] = ori_info_dict['gt_velocity'][
                    i, :].tolist()
                empty_instance['num_lidar_pts'] = ori_info_dict[
                    'num_lidar_pts'][i]
                empty_instance['num_radar_pts'] = ori_info_dict[
                    'num_radar_pts'][i]
                empty_instance['bbox_3d_isvalid'] = ori_info_dict[
                    'valid_flag'][i]
                empty_instance = clear_instance_unused_keys(empty_instance)
                temp_data_info['instances'].append(empty_instance)
            temp_data_info[
                'cam_instances'] = generate_nuscenes_camera_instances(
                    ori_info_dict, nusc)
VVsssssk's avatar
VVsssssk committed
368
369
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
370
    pkl_name = Path(pkl_path).name
VVsssssk's avatar
VVsssssk committed
371
372
373
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
374
375

    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
376
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
377
378
379
380
381
382
383
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'nuscenes'
    metainfo['version'] = data_list['metadata']['version']
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
VVsssssk's avatar
VVsssssk committed
384

385
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
386
387


jshilong's avatar
jshilong committed
388
389
390
391
392
393
394
395
396
def update_kitti_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
397
        'classes': ('Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck',
VVsssssk's avatar
VVsssssk committed
398
                    'Person_sitting', 'Tram', 'Misc'),
jshilong's avatar
jshilong committed
399
400
    }
    print(f'Reading from input file: {pkl_path}.')
401
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
402
403
    print('Start updating:')
    converted_list = []
404
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
405
406
407
408
409
        temp_data_info = get_empty_standard_data_info()

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']

410
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
jshilong's avatar
jshilong committed
411
412
413
414
415
416
417
418
419
420

        temp_data_info['images']['CAM0']['cam2img'] = ori_info_dict['calib'][
            'P0'].tolist()
        temp_data_info['images']['CAM1']['cam2img'] = ori_info_dict['calib'][
            'P1'].tolist()
        temp_data_info['images']['CAM2']['cam2img'] = ori_info_dict['calib'][
            'P2'].tolist()
        temp_data_info['images']['CAM3']['cam2img'] = ori_info_dict['calib'][
            'P3'].tolist()

421
422
        temp_data_info['images']['CAM2']['img_path'] = Path(
            ori_info_dict['image']['image_path']).name
jshilong's avatar
jshilong committed
423
424
425
426
427
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM2']['height'] = h
        temp_data_info['images']['CAM2']['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
428
429
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['point_cloud']['velodyne_path']).name
jshilong's avatar
jshilong committed
430
431
432
433
434

        rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)
        lidar2cam = rect @ Trv2c
        temp_data_info['images']['CAM2']['lidar2cam'] = lidar2cam.tolist()
jshilong's avatar
jshilong committed
435
436
437
438
439
440
441
442
443
        temp_data_info['images']['CAM0']['lidar2img'] = (
            ori_info_dict['calib']['P0'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM1']['lidar2img'] = (
            ori_info_dict['calib']['P1'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM2']['lidar2img'] = (
            ori_info_dict['calib']['P2'] @ lidar2cam).tolist()
        temp_data_info['images']['CAM3']['lidar2img'] = (
            ori_info_dict['calib']['P3'] @ lidar2cam).tolist()

jshilong's avatar
jshilong committed
444
445
446
447
448
449
450
451
        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
            'R0_rect'].astype(np.float32).tolist()
        temp_data_info['lidar_points']['Tr_imu_to_velo'] = ori_info_dict[
            'calib']['Tr_imu_to_velo'].astype(np.float32).tolist()

ZCMax's avatar
ZCMax committed
452
        cam2img = ori_info_dict['calib']['P2']
jshilong's avatar
jshilong committed
453

454
        anns = ori_info_dict.get('annos', None)
jshilong's avatar
jshilong committed
455
        ignore_class_name = set()
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        if anns is not None:
            num_instances = len(anns['name'])
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

                if anns['name'][instance_id] in METAINFO['classes']:
                    empty_instance['bbox_label'] = METAINFO['classes'].index(
                        anns['name'][instance_id])
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label'] = -1

                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

                loc = anns['location'][instance_id]
                dims = anns['dimensions'][instance_id]
                rots = anns['rotation_y'][:, None][instance_id]

                dst = np.array([0.5, 0.5, 0.5])
                src = np.array([0.5, 1.0, 0.5])

                center_3d = loc + dims * (dst - src)
                center_2d = points_cam2img(
                    center_3d.reshape([1, 3]), cam2img, with_depth=True)
                center_2d = center_2d.squeeze().tolist()
                empty_instance['center_2d'] = center_2d[:2]
                empty_instance['depth'] = center_2d[2]

                gt_bboxes_3d = np.concatenate([loc, dims, rots]).tolist()
                empty_instance['bbox_3d'] = gt_bboxes_3d
                empty_instance['bbox_label_3d'] = copy.deepcopy(
                    empty_instance['bbox_label'])
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
                empty_instance['truncated'] = anns['truncated'][
                    instance_id].tolist()
                empty_instance['occluded'] = anns['occluded'][
                    instance_id].tolist()
                empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
                empty_instance['score'] = anns['score'][instance_id].tolist()
                empty_instance['index'] = anns['index'][instance_id].tolist()
                empty_instance['group_id'] = anns['group_ids'][
                    instance_id].tolist()
                empty_instance['difficulty'] = anns['difficulty'][
                    instance_id].tolist()
                empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                    instance_id].tolist()
                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
            cam_instances = generate_kitti_camera_instances(ori_info_dict)
            temp_data_info['cam_instances'] = cam_instances
jshilong's avatar
jshilong committed
509
510
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
511
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
512
513
514
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
515
516
517

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
518
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
519
520
521
522
523
524
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'kitti'
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
525

526
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
527
528


ZCMax's avatar
ZCMax committed
529
530
531
532
533
534
def update_s3dis_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
535
    METAINFO = {'classes': ('table', 'chair', 'sofa', 'bookcase', 'board')}
ZCMax's avatar
ZCMax committed
536
    print(f'Reading from input file: {pkl_path}.')
537
    data_list = mmengine.load(pkl_path)
ZCMax's avatar
ZCMax committed
538
539
    print('Start updating:')
    converted_list = []
540
    for i, ori_info_dict in enumerate(mmengine.track_iter_progress(data_list)):
ZCMax's avatar
ZCMax committed
541
        temp_data_info = get_empty_standard_data_info()
542
        temp_data_info['sample_idx'] = i
ZCMax's avatar
ZCMax committed
543
544
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
545
546
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
547
548
549
550
551
552
        if 'pts_semantic_mask_path' in ori_info_dict:
            temp_data_info['pts_semantic_mask_path'] = Path(
                ori_info_dict['pts_semantic_mask_path']).name
        if 'pts_instance_mask_path' in ori_info_dict:
            temp_data_info['pts_instance_mask_path'] = Path(
                ori_info_dict['pts_instance_mask_path']).name
ZCMax's avatar
ZCMax committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
        anns = ori_info_dict.get('annos', None)
        ignore_class_name = set()
        if anns is not None:
            if anns['gt_num'] == 0:
                instance_list = []
            else:
                num_instances = len(anns['class'])
                instance_list = []
                for instance_id in range(num_instances):
                    empty_instance = get_empty_instance()
                    empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                        instance_id].tolist()

569
                    if anns['class'][instance_id] < len(METAINFO['classes']):
ZCMax's avatar
ZCMax committed
570
571
572
573
                        empty_instance['bbox_label_3d'] = anns['class'][
                            instance_id]
                    else:
                        ignore_class_name.add(
574
                            METAINFO['classes'][anns['class'][instance_id]])
ZCMax's avatar
ZCMax committed
575
576
577
578
579
580
581
                        empty_instance['bbox_label_3d'] = -1

                    empty_instance = clear_instance_unused_keys(empty_instance)
                    instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
582
    pkl_name = Path(pkl_path).name
ZCMax's avatar
ZCMax committed
583
584
585
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
586
587
588

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
589
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
590
591
592
593
594
595
596
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 's3dis'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
ZCMax's avatar
ZCMax committed
597

598
    mmengine.dump(converted_data_info, out_path, 'pkl')
ZCMax's avatar
ZCMax committed
599
600


jshilong's avatar
jshilong committed
601
602
603
604
605
606
607
def update_scannet_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
608
        'classes':
jshilong's avatar
jshilong committed
609
610
611
612
613
        ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
         'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator',
         'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin')
    }
    print(f'Reading from input file: {pkl_path}.')
614
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
615
616
    print('Start updating:')
    converted_list = []
617
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
618
619
620
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
621
622
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
623
624
625
626
627
628
        if 'pts_semantic_mask_path' in ori_info_dict:
            temp_data_info['pts_semantic_mask_path'] = Path(
                ori_info_dict['pts_semantic_mask_path']).name
        if 'pts_instance_mask_path' in ori_info_dict:
            temp_data_info['pts_instance_mask_path'] = Path(
                ori_info_dict['pts_instance_mask_path']).name
jshilong's avatar
jshilong committed
629
630
631

        # TODO support camera
        # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
632
        anns = ori_info_dict.get('annos', None)
633
        ignore_class_name = set()
634
635
636
637
638
639
640
641
642
643
644
645
        if anns is not None:
            temp_data_info['axis_align_matrix'] = anns[
                'axis_align_matrix'].tolist()
            if anns['gt_num'] == 0:
                instance_list = []
            else:
                num_instances = len(anns['name'])
                instance_list = []
                for instance_id in range(num_instances):
                    empty_instance = get_empty_instance()
                    empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                        instance_id].tolist()
646

647
648
649
650
651
652
                    if anns['name'][instance_id] in METAINFO['classes']:
                        empty_instance['bbox_label_3d'] = METAINFO[
                            'classes'].index(anns['name'][instance_id])
                    else:
                        ignore_class_name.add(anns['name'][instance_id])
                        empty_instance['bbox_label_3d'] = -1
653

654
655
656
                    empty_instance = clear_instance_unused_keys(empty_instance)
                    instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
jshilong's avatar
jshilong committed
657
658
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
659
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
660
661
662
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
663
664
665

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
666
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
667
668
669
670
671
672
673
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'scannet'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
674

675
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
676
677
678
679
680
681
682
683
684


def update_sunrgbd_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    METAINFO = {
685
        'classes': ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk',
jshilong's avatar
jshilong committed
686
687
688
                    'dresser', 'night_stand', 'bookshelf', 'bathtub')
    }
    print(f'Reading from input file: {pkl_path}.')
689
    data_list = mmengine.load(pkl_path)
jshilong's avatar
jshilong committed
690
691
    print('Start updating:')
    converted_list = []
692
    for ori_info_dict in mmengine.track_iter_progress(data_list):
jshilong's avatar
jshilong committed
693
694
695
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
696
697
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['pts_path']).name
jshilong's avatar
jshilong committed
698
699
700
701
702
703
704
        calib = ori_info_dict['calib']
        rt_mat = calib['Rt']
        # follow Coord3DMode.convert_point
        rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                           ]) @ rt_mat.transpose(1, 0)
        depth2img = calib['K'] @ rt_mat
        temp_data_info['images']['CAM0']['depth2img'] = depth2img.tolist()
705
706
        temp_data_info['images']['CAM0']['img_path'] = Path(
            ori_info_dict['image']['image_path']).name
jshilong's avatar
jshilong committed
707
708
709
710
        h, w = ori_info_dict['image']['image_shape']
        temp_data_info['images']['CAM0']['height'] = h
        temp_data_info['images']['CAM0']['width'] = w

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
        anns = ori_info_dict.get('annos', None)
        if anns is not None:
            if anns['gt_num'] == 0:
                instance_list = []
            else:
                num_instances = len(anns['name'])
                ignore_class_name = set()
                instance_list = []
                for instance_id in range(num_instances):
                    empty_instance = get_empty_instance()
                    empty_instance['bbox_3d'] = anns['gt_boxes_upright_depth'][
                        instance_id].tolist()
                    empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
                    if anns['name'][instance_id] in METAINFO['classes']:
                        empty_instance['bbox_label_3d'] = METAINFO[
                            'classes'].index(anns['name'][instance_id])
                        empty_instance['bbox_label'] = empty_instance[
                            'bbox_label_3d']
                    else:
                        ignore_class_name.add(anns['name'][instance_id])
                        empty_instance['bbox_label_3d'] = -1
                        empty_instance['bbox_label'] = -1
                    empty_instance = clear_instance_unused_keys(empty_instance)
                    instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
jshilong's avatar
jshilong committed
736
737
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
738
    pkl_name = Path(pkl_path).name
jshilong's avatar
jshilong committed
739
740
741
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
742
743
744

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
745
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
746
747
748
749
750
751
752
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'sunrgbd'
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
jshilong's avatar
jshilong committed
753

754
    mmengine.dump(converted_data_info, out_path, 'pkl')
jshilong's avatar
jshilong committed
755
756


VVsssssk's avatar
VVsssssk committed
757
758
759
760
761
762
def update_lyft_infos(pkl_path, out_dir):
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
    print(f'Reading from input file: {pkl_path}.')
763
    data_list = mmengine.load(pkl_path)
VVsssssk's avatar
VVsssssk committed
764
    METAINFO = {
765
        'classes':
VVsssssk's avatar
VVsssssk committed
766
767
768
769
770
771
        ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
         'motorcycle', 'bicycle', 'pedestrian', 'animal'),
    }
    print('Start updating:')
    converted_list = []
    for i, ori_info_dict in enumerate(
772
            mmengine.track_iter_progress(data_list['infos'])):
VVsssssk's avatar
VVsssssk committed
773
774
775
776
777
778
        temp_data_info = get_empty_standard_data_info()
        temp_data_info['sample_idx'] = i
        temp_data_info['token'] = ori_info_dict['token']
        temp_data_info['ego2global'] = convert_quaternion_to_matrix(
            ori_info_dict['ego2global_rotation'],
            ori_info_dict['ego2global_translation'])
779
780
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
            'num_features', 5)
781
782
        temp_data_info['lidar_points']['lidar_path'] = Path(
            ori_info_dict['lidar_path']).name
VVsssssk's avatar
VVsssssk committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        temp_data_info['lidar_points'][
            'lidar2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['lidar2ego_rotation'],
                ori_info_dict['lidar2ego_translation'])
        # bc-breaking: Timestamp has divided 1e6 in pkl infos.
        temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
        for ori_sweep in ori_info_dict['sweeps']:
            temp_lidar_sweep = get_single_lidar_sweep()
            temp_lidar_sweep['lidar_points'][
                'lidar2ego'] = convert_quaternion_to_matrix(
                    ori_sweep['sensor2ego_rotation'],
                    ori_sweep['sensor2ego_translation'])
            temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
                ori_sweep['ego2global_rotation'],
                ori_sweep['ego2global_translation'])
            lidar2sensor = np.eye(4)
799
800
801
            rot = ori_sweep['sensor2lidar_rotation']
            trans = ori_sweep['sensor2lidar_translation']
            lidar2sensor[:3, :3] = rot.T
802
            lidar2sensor[:3, 3:4] = -1 * np.matmul(rot.T, trans.reshape(3, 1))
VVsssssk's avatar
VVsssssk committed
803
804
805
806
807
808
809
810
811
812
813
814
            temp_lidar_sweep['lidar_points'][
                'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
            # bc-breaking: Timestamp has divided 1e6 in pkl infos.
            temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
            temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
                'data_path']
            temp_lidar_sweep['sample_data_token'] = ori_sweep[
                'sample_data_token']
            temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
        temp_data_info['images'] = {}
        for cam in ori_info_dict['cams']:
            empty_img_info = get_empty_img_info()
815
816
            empty_img_info['img_path'] = Path(
                ori_info_dict['cams'][cam]['data_path']).name
VVsssssk's avatar
VVsssssk committed
817
818
819
820
821
822
823
824
825
826
            empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
                'cam_intrinsic'].tolist()
            empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
                'sample_data_token']
            empty_img_info[
                'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
            empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
                ori_info_dict['cams'][cam]['sensor2ego_rotation'],
                ori_info_dict['cams'][cam]['sensor2ego_translation'])
            lidar2sensor = np.eye(4)
827
828
829
            rot = ori_info_dict['cams'][cam]['sensor2lidar_rotation']
            trans = ori_info_dict['cams'][cam]['sensor2lidar_translation']
            lidar2sensor[:3, :3] = rot.T
830
            lidar2sensor[:3, 3:4] = -1 * np.matmul(rot.T, trans.reshape(3, 1))
VVsssssk's avatar
VVsssssk committed
831
832
833
834
            empty_img_info['lidar2cam'] = lidar2sensor.astype(
                np.float32).tolist()
            temp_data_info['images'][cam] = empty_img_info
        ignore_class_name = set()
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
        if 'gt_boxes' in ori_info_dict:
            num_instances = ori_info_dict['gt_boxes'].shape[0]
            for i in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
                    i, :].tolist()
                if ori_info_dict['gt_names'][i] in METAINFO['classes']:
                    empty_instance['bbox_label'] = METAINFO['classes'].index(
                        ori_info_dict['gt_names'][i])
                else:
                    ignore_class_name.add(ori_info_dict['gt_names'][i])
                    empty_instance['bbox_label'] = -1
                empty_instance['bbox_label_3d'] = copy.deepcopy(
                    empty_instance['bbox_label'])
                empty_instance = clear_instance_unused_keys(empty_instance)
                temp_data_info['instances'].append(empty_instance)
VVsssssk's avatar
VVsssssk committed
851
852
        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
853
    pkl_name = Path(pkl_path).name
VVsssssk's avatar
VVsssssk committed
854
855
856
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
857
858

    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
859
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
860
861
862
863
864
865
866
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'lyft'
    metainfo['version'] = data_list['metadata']['version']
    metainfo['info_version'] = '1.1'
    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
VVsssssk's avatar
VVsssssk committed
867

868
    mmengine.dump(converted_data_info, out_path, 'pkl')
VVsssssk's avatar
VVsssssk committed
869
870


871
872
873
874
875
876
def update_waymo_infos(pkl_path, out_dir):
    # the input pkl is based on the
    # pkl generated in the waymo cam only challenage.
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_LEFT',
877
        'CAM_FRONT_RIGHT',
878
        'CAM_SIDE_LEFT',
879
        'CAM_SIDE_RIGHT',
880
881
882
883
884
885
886
887
888
    ]
    print(f'{pkl_path} will be modified.')
    if out_dir in pkl_path:
        print(f'Warning, you may overwriting '
              f'the original data {pkl_path}.')
        time.sleep(5)
    # TODO update to full label
    # TODO discuss how to process 'Van', 'DontCare'
    METAINFO = {
889
        'classes': ('Car', 'Pedestrian', 'Cyclist', 'Sign'),
890
891
    }
    print(f'Reading from input file: {pkl_path}.')
892
    data_list = mmengine.load(pkl_path)
893
894
    print('Start updating:')
    converted_list = []
895
    for ori_info_dict in mmengine.track_iter_progress(data_list):
896
897
898
899
        temp_data_info = get_empty_standard_data_info(camera_types)

        if 'plane' in ori_info_dict:
            temp_data_info['plane'] = ori_info_dict['plane']
900
        temp_data_info['sample_idx'] = ori_info_dict['image']['image_idx']
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

        # calib matrix
        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['cam2img'] =\
                 ori_info_dict['calib'][f'P{cam_idx}'].tolist()

        for cam_idx, cam_key in enumerate(camera_types):
            rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
            velo_to_cam = 'Tr_velo_to_cam'
            if cam_idx != 0:
                velo_to_cam += str(cam_idx)
            Trv2c = ori_info_dict['calib'][velo_to_cam].astype(np.float32)

            lidar2cam = rect @ Trv2c
            temp_data_info['images'][cam_key]['lidar2cam'] = lidar2cam.tolist()
            temp_data_info['images'][cam_key]['lidar2img'] = (
                ori_info_dict['calib'][f'P{cam_idx}'] @ lidar2cam).tolist()

        # image path
920
        base_img_path = Path(ori_info_dict['image']['image_path']).name
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

        for cam_idx, cam_key in enumerate(camera_types):
            temp_data_info['images'][cam_key]['timestamp'] = ori_info_dict[
                'timestamp']
            temp_data_info['images'][cam_key]['img_path'] = base_img_path

        h, w = ori_info_dict['image']['image_shape']

        # for potential usage
        temp_data_info['images'][camera_types[0]]['height'] = h
        temp_data_info['images'][camera_types[0]]['width'] = w
        temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
            'point_cloud']['num_features']
        temp_data_info['lidar_points']['timestamp'] = ori_info_dict[
            'timestamp']
936
937
938
        velo_path = ori_info_dict['point_cloud'].get('velodyne_path')
        if velo_path is not None:
            temp_data_info['lidar_points']['lidar_path'] = Path(velo_path).name
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

        # TODO discuss the usage of Tr_velo_to_cam in lidar
        Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)

        temp_data_info['lidar_points']['Tr_velo_to_cam'] = Trv2c.tolist()

        # for potential usage
        # temp_data_info['images']['R0_rect'] = ori_info_dict['calib'][
        #     'R0_rect'].astype(np.float32).tolist()

        # for the sweeps part:
        temp_data_info['timestamp'] = ori_info_dict['timestamp']
        temp_data_info['ego2global'] = ori_info_dict['pose']

        for ori_sweep in ori_info_dict['sweeps']:
            # lidar sweeps
            lidar_sweep = get_single_lidar_sweep()
            lidar_sweep['ego2global'] = ori_sweep['pose']
            lidar_sweep['timestamp'] = ori_sweep['timestamp']
958
959
            lidar_sweep['lidar_points']['lidar_path'] = Path(
                ori_sweep['velodyne_path']).name
960
961
962
963
            # image sweeps
            image_sweep = get_single_image_sweep(camera_types)
            image_sweep['ego2global'] = ori_sweep['pose']
            image_sweep['timestamp'] = ori_sweep['timestamp']
964
            img_path = Path(ori_sweep['image_path']).name
965
966
967
968
969
970
            for cam_idx, cam_key in enumerate(camera_types):
                image_sweep['images'][cam_key]['img_path'] = img_path

            temp_data_info['lidar_sweeps'].append(lidar_sweep)
            temp_data_info['image_sweeps'].append(image_sweep)

971
        anns = ori_info_dict.get('annos', None)
972
        ignore_class_name = set()
973
974
        if anns is not None:
            num_instances = len(anns['name'])
975

976
977
978
979
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
980

981
982
983
984
985
986
                if anns['name'][instance_id] in METAINFO['classes']:
                    empty_instance['bbox_label'] = METAINFO['classes'].index(
                        anns['name'][instance_id])
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label'] = -1
987

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()

                loc = anns['location'][instance_id]
                dims = anns['dimensions'][instance_id]
                rots = anns['rotation_y'][:, None][instance_id]
                gt_bboxes_3d = np.concatenate([loc, dims, rots
                                               ]).astype(np.float32).tolist()
                empty_instance['bbox_3d'] = gt_bboxes_3d
                empty_instance['bbox_label_3d'] = copy.deepcopy(
                    empty_instance['bbox_label'])
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
                empty_instance['truncated'] = int(
                    anns['truncated'][instance_id].tolist())
                empty_instance['occluded'] = anns['occluded'][
                    instance_id].tolist()
                empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
                empty_instance['index'] = anns['index'][instance_id].tolist()
                empty_instance['group_id'] = anns['group_ids'][
                    instance_id].tolist()
                empty_instance['difficulty'] = anns['difficulty'][
                    instance_id].tolist()
                empty_instance['num_lidar_pts'] = anns['num_points_in_gt'][
                    instance_id].tolist()
                empty_instance['camera_id'] = anns['camera_id'][
                    instance_id].tolist()
                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
            temp_data_info['instances'] = instance_list
1016
1017

        # waymo provide the labels that sync with cam
1018
        anns = ori_info_dict.get('cam_sync_annos', None)
1019
        ignore_class_name = set()
1020
1021
1022
1023
1024
1025
        if anns is not None:
            num_instances = len(anns['name'])
            instance_list = []
            for instance_id in range(num_instances):
                empty_instance = get_empty_instance()
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
1026

1027
1028
1029
1030
1031
1032
                if anns['name'][instance_id] in METAINFO['classes']:
                    empty_instance['bbox_label'] = METAINFO['classes'].index(
                        anns['name'][instance_id])
                else:
                    ignore_class_name.add(anns['name'][instance_id])
                    empty_instance['bbox_label'] = -1
1033

1034
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
                loc = anns['location'][instance_id]
                dims = anns['dimensions'][instance_id]
                rots = anns['rotation_y'][:, None][instance_id]
                gt_bboxes_3d = np.concatenate([loc, dims, rots
                                               ]).astype(np.float32).tolist()
                empty_instance['bbox_3d'] = gt_bboxes_3d
                empty_instance['bbox_label_3d'] = copy.deepcopy(
                    empty_instance['bbox_label'])
                empty_instance['bbox'] = anns['bbox'][instance_id].tolist()
                empty_instance['truncated'] = int(
                    anns['truncated'][instance_id].tolist())
                empty_instance['occluded'] = anns['occluded'][
                    instance_id].tolist()
                empty_instance['alpha'] = anns['alpha'][instance_id].tolist()
                empty_instance['index'] = anns['index'][instance_id].tolist()
                empty_instance['group_id'] = anns['group_ids'][
                    instance_id].tolist()
                empty_instance['camera_id'] = anns['camera_id'][
                    instance_id].tolist()
                empty_instance = clear_instance_unused_keys(empty_instance)
                instance_list.append(empty_instance)
            temp_data_info['cam_sync_instances'] = instance_list
1058

1059
1060
1061
            cam_instances = generate_waymo_camera_instances(
                ori_info_dict, camera_types)
            temp_data_info['cam_instances'] = cam_instances
1062
1063
1064

        temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
        converted_list.append(temp_data_info)
1065
    pkl_name = Path(pkl_path).name
1066
1067
1068
    out_path = osp.join(out_dir, pkl_name)
    print(f'Writing to output file: {out_path}.')
    print(f'ignore classes: {ignore_class_name}')
1069
1070
1071

    # dataset metainfo
    metainfo = dict()
Xiangxu-0103's avatar
Xiangxu-0103 committed
1072
    metainfo['categories'] = {k: i for i, k in enumerate(METAINFO['classes'])}
1073
1074
1075
1076
    if ignore_class_name:
        for ignore_class in ignore_class_name:
            metainfo['categories'][ignore_class] = -1
    metainfo['dataset'] = 'waymo'
1077
    metainfo['version'] = '1.4'
1078
1079
1080
    metainfo['info_version'] = '1.1'

    converted_data_info = dict(metainfo=metainfo, data_list=converted_list)
1081

1082
    mmengine.dump(converted_data_info, out_path, 'pkl')
1083
1084


1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
def generate_kitti_camera_instances(ori_info_dict):

    cam_key = 'CAM2'
    empty_camera_instances = get_empty_multicamera_instances([cam_key])
    annos = copy.deepcopy(ori_info_dict['annos'])
    ann_infos = get_kitti_style_2d_boxes(
        ori_info_dict, occluded=[0, 1, 2, 3], annos=annos)
    empty_camera_instances[cam_key] = ann_infos

    return empty_camera_instances


1097
1098
1099
1100
1101
1102
1103
1104
1105
def generate_waymo_camera_instances(ori_info_dict, cam_keys):

    empty_multicamera_instances = get_empty_multicamera_instances(cam_keys)

    for cam_idx, cam_key in enumerate(cam_keys):
        annos = copy.deepcopy(ori_info_dict['cam_sync_annos'])
        if cam_idx != 0:
            annos = convert_annos(ori_info_dict, cam_idx)

1106
1107
        ann_infos = get_kitti_style_2d_boxes(
            ori_info_dict, cam_idx, occluded=[0], annos=annos, dataset='waymo')
1108
1109
1110
1111
1112

        empty_multicamera_instances[cam_key] = ann_infos
    return empty_multicamera_instances


jshilong's avatar
jshilong committed
1113
1114
1115
1116
1117
1118
def parse_args():
    parser = argparse.ArgumentParser(description='Arg parser for data coords '
                                     'update due to coords sys refactor.')
    parser.add_argument(
        '--dataset', type=str, default='kitti', help='name of dataset')
    parser.add_argument(
1119
        '--pkl-path',
jshilong's avatar
jshilong committed
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
        type=str,
        default='./data/kitti/kitti_infos_train.pkl ',
        help='specify the root dir of dataset')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='converted_annotations',
        required=False,
        help='output direction of info pkl')
    args = parser.parse_args()
    return args


VVsssssk's avatar
VVsssssk committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
def update_pkl_infos(dataset, out_dir, pkl_path):
    if dataset.lower() == 'kitti':
        update_kitti_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'waymo':
        update_waymo_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'scannet':
        update_scannet_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'sunrgbd':
        update_sunrgbd_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'lyft':
        update_lyft_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 'nuscenes':
        update_nuscenes_infos(pkl_path=pkl_path, out_dir=out_dir)
    elif dataset.lower() == 's3dis':
        update_s3dis_infos(pkl_path=pkl_path, out_dir=out_dir)
jshilong's avatar
jshilong committed
1148
    else:
VVsssssk's avatar
VVsssssk committed
1149
        raise NotImplementedError(f'Do not support convert {dataset} to v2.')
jshilong's avatar
jshilong committed
1150
1151
1152


if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
1153
1154
1155
1156
    args = parse_args()
    if args.out_dir is None:
        args.out_dir = args.root_dir
    update_pkl_infos(
1157
        dataset=args.dataset, out_dir=args.out_dir, pkl_path=args.pkl_path)