show_result.py 9.99 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
liyinhao's avatar
liyinhao committed
2
3
4
import mmcv
import numpy as np
import trimesh
zhangwenwei's avatar
zhangwenwei committed
5
from os import path as osp
liyinhao's avatar
liyinhao committed
6

7
8
from .image_vis import (draw_camera_bbox3d_on_img, draw_depth_bbox3d_on_img,
                        draw_lidar_bbox3d_on_img)
9

liyinhao's avatar
liyinhao committed
10

11
12
def _write_obj(points, out_filename):
    """Write points into ``obj`` format for meshlab visualization.
zhangwenwei's avatar
zhangwenwei committed
13
14
15
16
17

    Args:
        points (np.ndarray): Points in shape (N, dim).
        out_filename (str): Filename to be saved.
    """
liyinhao's avatar
liyinhao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    N = points.shape[0]
    fout = open(out_filename, 'w')
    for i in range(N):
        if points.shape[1] == 6:
            c = points[i, 3:].astype(int)
            fout.write(
                'v %f %f %f %d %d %d\n' %
                (points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2]))

        else:
            fout.write('v %f %f %f\n' %
                       (points[i, 0], points[i, 1], points[i, 2]))
    fout.close()


def _write_oriented_bbox(scene_bbox, out_filename):
zhangwenwei's avatar
zhangwenwei committed
34
    """Export oriented (around Z axis) scene bbox to meshes.
liyinhao's avatar
liyinhao committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

    Args:
        scene_bbox(list[ndarray] or ndarray): xyz pos of center and
            3 lengths (dx,dy,dz) and heading angle around Z axis.
            Y forward, X right, Z upward. heading angle of positive X is 0,
            heading angle of positive Y is 90 degrees.
        out_filename(str): Filename.
    """

    def heading2rotmat(heading_angle):
        rotmat = np.zeros((3, 3))
        rotmat[2, 2] = 1
        cosval = np.cos(heading_angle)
        sinval = np.sin(heading_angle)
        rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]])
        return rotmat

    def convert_oriented_box_to_trimesh_fmt(box):
        ctr = box[:3]
        lengths = box[3:6]
        trns = np.eye(4)
        trns[0:3, 3] = ctr
        trns[3, 3] = 1.0
        trns[0:3, 0:3] = heading2rotmat(box[6])
        box_trimesh_fmt = trimesh.creation.box(lengths, trns)
        return box_trimesh_fmt

    if len(scene_bbox) == 0:
        scene_bbox = np.zeros((1, 7))
    scene = trimesh.scene.Scene()
    for box in scene_bbox:
        scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))

    mesh_list = trimesh.util.concatenate(scene.dump())
69
70
    # save to obj file
    trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj')
liyinhao's avatar
liyinhao committed
71
72
73
74

    return


75
76
77
78
79
def show_result(points,
                gt_bboxes,
                pred_bboxes,
                out_dir,
                filename,
80
                show=True,
81
                snapshot=False):
zhangwenwei's avatar
zhangwenwei committed
82
83
84
85
86
87
88
89
    """Convert results into format that is directly readable for meshlab.

    Args:
        points (np.ndarray): Points.
        gt_bboxes (np.ndarray): Ground truth boxes.
        pred_bboxes (np.ndarray): Predicted boxes.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
90
91
        show (bool): Visualize the results online. Defaults to False.
        snapshot (bool): Whether to save the online results. Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
92
    """
93
94
95
    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

96
    if show:
97
98
        from .open3d_vis import Visualizer

99
100
101
102
103
        vis = Visualizer(points)
        if pred_bboxes is not None:
            vis.add_bboxes(bbox3d=pred_bboxes)
        if gt_bboxes is not None:
            vis.add_bboxes(bbox3d=gt_bboxes, bbox_color=(0, 0, 1))
104
105
106
        show_path = osp.join(result_path,
                             f'{filename}_online.png') if snapshot else None
        vis.show(show_path)
liyinhao's avatar
liyinhao committed
107

108
    if points is not None:
109
        _write_obj(points, osp.join(result_path, f'{filename}_points.obj'))
110

liyinhao's avatar
liyinhao committed
111
    if gt_bboxes is not None:
112
113
114
        # bottom center to gravity center
        gt_bboxes[..., 2] += gt_bboxes[..., 5] / 2
        # the positive direction for yaw in meshlab is clockwise
liyinhao's avatar
liyinhao committed
115
        gt_bboxes[:, 6] *= -1
liyinhao's avatar
liyinhao committed
116
        _write_oriented_bbox(gt_bboxes,
117
                             osp.join(result_path, f'{filename}_gt.obj'))
liyinhao's avatar
liyinhao committed
118
119

    if pred_bboxes is not None:
120
121
122
        # bottom center to gravity center
        pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
        # the positive direction for yaw in meshlab is clockwise
liyinhao's avatar
liyinhao committed
123
        pred_bboxes[:, 6] *= -1
liyinhao's avatar
liyinhao committed
124
        _write_oriented_bbox(pred_bboxes,
125
126
127
128
129
130
131
132
133
134
                             osp.join(result_path, f'{filename}_pred.obj'))


def show_seg_result(points,
                    gt_seg,
                    pred_seg,
                    out_dir,
                    filename,
                    palette,
                    ignore_index=None,
Ziyi Wu's avatar
Ziyi Wu committed
135
                    show=True,
136
                    snapshot=False):
137
138
139
140
141
142
143
144
145
146
147
148
    """Convert results into format that is directly readable for meshlab.

    Args:
        points (np.ndarray): Points.
        gt_seg (np.ndarray): Ground truth segmentation mask.
        pred_seg (np.ndarray): Predicted segmentation mask.
        out_dir (str): Path of output directory
        filename (str): Filename of the current frame.
        palette (np.ndarray): Mapping between class labels and colors.
        ignore_index (int, optional): The label index to be ignored, e.g. \
            unannotated points. Defaults to None.
        show (bool, optional): Visualize the results online. Defaults to False.
149
150
        snapshot (bool, optional): Whether to save the online results. \
            Defaults to False.
151
    """
152
153
154
155
    # we need 3D coordinates to visualize segmentation mask
    if gt_seg is not None or pred_seg is not None:
        assert points is not None, \
            '3D coordinates are required for segmentation visualization'
156
157
158
159
160
161
162
163
164
165
166

    # filter out ignored points
    if gt_seg is not None and ignore_index is not None:
        if points is not None:
            points = points[gt_seg != ignore_index]
        if pred_seg is not None:
            pred_seg = pred_seg[gt_seg != ignore_index]
        gt_seg = gt_seg[gt_seg != ignore_index]

    if gt_seg is not None:
        gt_seg_color = palette[gt_seg]
167
        gt_seg_color = np.concatenate([points[:, :3], gt_seg_color], axis=1)
168
169
    if pred_seg is not None:
        pred_seg_color = palette[pred_seg]
170
171
172
        pred_seg_color = np.concatenate([points[:, :3], pred_seg_color],
                                        axis=1)

173
174
175
    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

176
177
178
179
180
181
182
183
184
185
    # online visualization of segmentation mask
    # we show three masks in a row, scene_points, gt_mask, pred_mask
    if show:
        from .open3d_vis import Visualizer
        mode = 'xyzrgb' if points.shape[1] == 6 else 'xyz'
        vis = Visualizer(points, mode=mode)
        if gt_seg is not None:
            vis.add_seg_mask(gt_seg_color)
        if pred_seg is not None:
            vis.add_seg_mask(pred_seg_color)
186
187
188
        show_path = osp.join(result_path,
                             f'{filename}_online.png') if snapshot else None
        vis.show(show_path)
189
190
191
192
193

    if points is not None:
        _write_obj(points, osp.join(result_path, f'{filename}_points.obj'))

    if gt_seg is not None:
194
        _write_obj(gt_seg_color, osp.join(result_path, f'{filename}_gt.obj'))
195
196

    if pred_seg is not None:
197
198
        _write_obj(pred_seg_color, osp.join(result_path,
                                            f'{filename}_pred.obj'))
199
200
201
202
203
204
205
206


def show_multi_modality_result(img,
                               gt_bboxes,
                               pred_bboxes,
                               proj_mat,
                               out_dir,
                               filename,
207
                               box_mode='lidar',
208
                               img_metas=None,
Ziyi Wu's avatar
Ziyi Wu committed
209
                               show=True,
210
211
212
213
214
215
216
217
                               gt_bbox_color=(61, 102, 255),
                               pred_bbox_color=(241, 101, 72)):
    """Convert multi-modality detection results into 2D results.

    Project the predicted 3D bbox to 2D image plane and visualize them.

    Args:
        img (np.ndarray): The numpy array of image in cv2 fashion.
218
219
        gt_bboxes (:obj:`BaseInstance3DBoxes`): Ground truth boxes.
        pred_bboxes (:obj:`BaseInstance3DBoxes`): Predicted boxes.
220
221
        proj_mat (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
222
        out_dir (str): Path of output directory.
223
        filename (str): Filename of the current frame.
224
225
        box_mode (str): Coordinate system the boxes are in. Should be one of
           'depth', 'lidar' and 'camera'. Defaults to 'lidar'.
226
        img_metas (dict): Used in projecting depth bbox.
227
        show (bool): Visualize the results online. Defaults to False.
228
229
230
231
232
        gt_bbox_color (str or tuple(int)): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (255, 102, 61)
        pred_bbox_color (str or tuple(int)): Color of bbox lines.
           The tuple of color should be in BGR order. Default: (72, 101, 241)
    """
233
    if box_mode == 'depth':
234
        draw_bbox = draw_depth_bbox3d_on_img
235
    elif box_mode == 'lidar':
236
        draw_bbox = draw_lidar_bbox3d_on_img
237
238
239
240
    elif box_mode == 'camera':
        draw_bbox = draw_camera_bbox3d_on_img
    else:
        raise NotImplementedError(f'unsupported box mode {box_mode}')
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    result_path = osp.join(out_dir, filename)
    mmcv.mkdir_or_exist(result_path)

    if show:
        show_img = img.copy()
        if gt_bboxes is not None:
            show_img = draw_bbox(
                gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color)
        if pred_bboxes is not None:
            show_img = draw_bbox(
                pred_bboxes,
                show_img,
                proj_mat,
                img_metas,
                color=pred_bbox_color)
        mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0)

    if img is not None:
        mmcv.imwrite(img, osp.join(result_path, f'{filename}_img.png'))

    if gt_bboxes is not None:
        gt_img = draw_bbox(
            gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)
        mmcv.imwrite(gt_img, osp.join(result_path, f'{filename}_gt.png'))

    if pred_bboxes is not None:
        pred_img = draw_bbox(
            pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color)
        mmcv.imwrite(pred_img, osp.join(result_path, f'{filename}_pred.png'))