inference.py 16.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
wuyuefeng's avatar
Demo  
wuyuefeng committed
2
import mmcv
3
4
import numpy as np
import re
wuyuefeng's avatar
Demo  
wuyuefeng committed
5
import torch
zhangwenwei's avatar
zhangwenwei committed
6
from copy import deepcopy
wuyuefeng's avatar
Demo  
wuyuefeng committed
7
8
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
zhangwenwei's avatar
zhangwenwei committed
9
from os import path as osp
wuyuefeng's avatar
Demo  
wuyuefeng committed
10

11
12
13
14
from mmdet3d.core import (Box3DMode, CameraInstance3DBoxes,
                          DepthInstance3DBoxes, LiDARInstance3DBoxes,
                          show_multi_modality_result, show_result,
                          show_seg_result)
wuyuefeng's avatar
Demo  
wuyuefeng committed
15
16
from mmdet3d.core.bbox import get_box_type
from mmdet3d.datasets.pipelines import Compose
17
from mmdet3d.models import build_model
wuyuefeng's avatar
Demo  
wuyuefeng committed
18
19


20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
def convert_SyncBN(config):
    """Convert config's naiveSyncBN to BN.

    Args:
         config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
    """
    if isinstance(config, dict):
        for item in config:
            if item == 'norm_cfg':
                config[item]['type'] = config[item]['type']. \
                                    replace('naiveSyncBN', 'BN')
            else:
                convert_SyncBN(config[item])


36
37
38
def init_model(config, checkpoint=None, device='cuda:0'):
    """Initialize a model from config file, which could be a 3D detector or a
    3D segmentor.
wuyuefeng's avatar
Demo  
wuyuefeng committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.
        device (str): Device to use.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
56
    convert_SyncBN(config.model)
57
    config.model.train_cfg = None
58
    model = build_model(config.model, test_cfg=config.get('test_cfg'))
wuyuefeng's avatar
Demo  
wuyuefeng committed
59
60
61
62
63
64
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = config.class_names
65
66
        if 'PALETTE' in checkpoint['meta']:  # 3D Segmentor
            model.PALETTE = checkpoint['meta']['PALETTE']
wuyuefeng's avatar
Demo  
wuyuefeng committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


def inference_detector(model, pcd):
    """Inference point cloud with the detector.

    Args:
        model (nn.Module): The loaded detector.
        pcd (str): Point cloud files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    data = dict(
        pts_filename=pcd,
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
Ziyi Wu's avatar
Ziyi Wu committed
93
94
        # for ScanNet demo we need axis_align_matrix
        ann_info=dict(axis_align_matrix=np.eye(4)),
95
96
97
        sweeps=[],
        # set timestamp = 0
        timestamp=[0],
wuyuefeng's avatar
Demo  
wuyuefeng committed
98
99
100
101
102
103
104
105
106
107
108
109
110
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
yinchimaoliang's avatar
yinchimaoliang committed
111
112
113
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
wuyuefeng's avatar
Demo  
wuyuefeng committed
114
115
116
117
118
119
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


120
def inference_multi_modality_detector(model, pcd, image, ann_file):
121
    """Inference point cloud with the multi-modality detector.
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

    Args:
        model (nn.Module): The loaded detector.
        pcd (str): Point cloud files.
        image (str): Image files.
        ann_file (str): Annotation files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    # get data info containing calib
    data_infos = mmcv.load(ann_file)
    image_idx = int(re.findall(r'\d+', image)[-1])  # xxx/sunrgbd_000017.jpg
    for x in data_infos:
        if int(x['image']['image_idx']) != image_idx:
            continue
        info = x
        break
    data = dict(
        pts_filename=pcd,
        img_prefix=osp.dirname(image),
        img_info=dict(filename=osp.basename(image)),
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])
    data = test_pipeline(data)

161
162
    # TODO: this code is dataset-specific. Move lidar2img and
    #       depth2img to .pkl annotations in the future.
163
164
165
166
167
168
169
    # LiDAR to image conversion
    if box_mode_3d == Box3DMode.LIDAR:
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c
        data['img_metas'][0].data['lidar2img'] = lidar2img
170
    # Depth to image conversion
171
    elif box_mode_3d == Box3DMode.DEPTH:
172
173
174
175
176
177
        rt_mat = info['calib']['Rt']
        # follow Coord3DMode.convert_point
        rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]
                           ]) @ rt_mat.transpose(1, 0)
        depth2img = info['calib']['K'] @ rt_mat
        data['img_metas'][0].data['depth2img'] = depth2img
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
        data['img'] = data['img'][0].data

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def inference_mono_3d_detector(model, image, ann_file):
    """Inference image with the monocular 3D detector.

    Args:
        model (nn.Module): The loaded detector.
        image (str): Image files.
        ann_file (str): Annotation files.

    Returns:
        tuple: Predicted results and data from pipeline.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d)
    # get data info containing calib
    data_infos = mmcv.load(ann_file)
    # find the info corresponding to this image
    for x in data_infos['images']:
        if osp.basename(x['file_name']) != osp.basename(image):
            continue
        img_info = x
        break
    data = dict(
        img_prefix=osp.dirname(image),
        img_info=dict(filename=osp.basename(image)),
        box_type_3d=box_type_3d,
        box_mode_3d=box_mode_3d,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])

    # camera points to image conversion
    if box_mode_3d == Box3DMode.CAM:
        data['img_info'].update(dict(cam_intrinsic=img_info['cam_intrinsic']))

    data = test_pipeline(data)

    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['img'] = data['img'][0].data

    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


254
255
def inference_segmentor(model, pcd):
    """Inference point cloud with the segmentor.
wuyuefeng's avatar
Demo  
wuyuefeng committed
256
257

    Args:
258
259
260
261
262
        model (nn.Module): The loaded segmentor.
        pcd (str): Point cloud files.

    Returns:
        tuple: Predicted results and data from pipeline.
wuyuefeng's avatar
Demo  
wuyuefeng committed
263
    """
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = deepcopy(cfg.data.test.pipeline)
    test_pipeline = Compose(test_pipeline)
    data = dict(
        pts_filename=pcd,
        img_fields=[],
        bbox3d_fields=[],
        pts_mask_fields=[],
        pts_seg_fields=[],
        bbox_fields=[],
        mask_fields=[],
        seg_fields=[])
    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    if next(model.parameters()).is_cuda:
        # scatter to specified GPU
        data = scatter(data, [device.index])[0]
    else:
        # this is a workaround to avoid the bug of MMDataParallel
        data['img_metas'] = data['img_metas'][0].data
        data['points'] = data['points'][0].data
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result, data


def show_det_result_meshlab(data,
                            result,
                            out_dir,
                            score_thr=0.0,
                            show=False,
                            snapshot=False):
    """Show 3D detection result by meshlab."""
wuyuefeng's avatar
Demo  
wuyuefeng committed
300
301
302
303
    points = data['points'][0][0].cpu().numpy()
    pts_filename = data['img_metas'][0][0]['pts_filename']
    file_name = osp.split(pts_filename)[-1].split('.')[0]

304
305
    if 'pts_bbox' in result[0].keys():
        pred_bboxes = result[0]['pts_bbox']['boxes_3d'].tensor.numpy()
306
        pred_scores = result[0]['pts_bbox']['scores_3d'].numpy()
307
308
    else:
        pred_bboxes = result[0]['boxes_3d'].tensor.numpy()
309
310
311
312
313
314
315
        pred_scores = result[0]['scores_3d'].numpy()

    # filter out low score bboxes for visualization
    if score_thr > 0:
        inds = pred_scores > score_thr
        pred_bboxes = pred_bboxes[inds]

wuyuefeng's avatar
Demo  
wuyuefeng committed
316
    # for now we convert points into depth mode
317
318
    box_mode = data['img_metas'][0][0]['box_mode_3d']
    if box_mode != Box3DMode.DEPTH:
wuyuefeng's avatar
Demo  
wuyuefeng committed
319
320
        points = points[..., [1, 0, 2]]
        points[..., 0] *= -1
321
322
323
        show_bboxes = Box3DMode.convert(pred_bboxes, box_mode, Box3DMode.DEPTH)
    else:
        show_bboxes = deepcopy(pred_bboxes)
324

325
326
327
328
329
330
331
332
    show_result(
        points,
        None,
        show_bboxes,
        out_dir,
        file_name,
        show=show,
        snapshot=snapshot)
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    return file_name


def show_seg_result_meshlab(data,
                            result,
                            out_dir,
                            palette,
                            show=False,
                            snapshot=False):
    """Show 3D segmentation result by meshlab."""
    points = data['points'][0][0].cpu().numpy()
    pts_filename = data['img_metas'][0][0]['pts_filename']
    file_name = osp.split(pts_filename)[-1].split('.')[0]

    pred_seg = result[0]['semantic_mask'].numpy()

    if palette is None:
        # generate random color map
        max_idx = pred_seg.max()
        palette = np.random.randint(0, 256, size=(max_idx + 1, 3))
    palette = np.array(palette).astype(np.int)

    show_seg_result(
        points,
        None,
        pred_seg,
        out_dir,
        file_name,
        palette=palette,
        show=show,
        snapshot=snapshot)

    return file_name

368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def show_proj_det_result_meshlab(data,
                                 result,
                                 out_dir,
                                 score_thr=0.0,
                                 show=False,
                                 snapshot=False):
    """Show result of projecting 3D bbox to 2D image by meshlab."""
    assert 'img' in data.keys(), 'image data is not provided for visualization'

    img_filename = data['img_metas'][0][0]['filename']
    file_name = osp.split(img_filename)[-1].split('.')[0]

    # read from file because img in data_dict has undergone pipeline transform
    img = mmcv.imread(img_filename)

    if 'pts_bbox' in result[0].keys():
385
386
387
388
389
        result[0] = result[0]['pts_bbox']
    elif 'img_bbox' in result[0].keys():
        result[0] = result[0]['img_bbox']
    pred_bboxes = result[0]['boxes_3d'].tensor.numpy()
    pred_scores = result[0]['scores_3d'].numpy()
390
391
392
393
394
395
396

    # filter out low score bboxes for visualization
    if score_thr > 0:
        inds = pred_scores > score_thr
        pred_bboxes = pred_bboxes[inds]

    box_mode = data['img_metas'][0][0]['box_mode_3d']
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    if box_mode == Box3DMode.LIDAR:
        if 'lidar2img' not in data['img_metas'][0][0]:
            raise NotImplementedError(
                'LiDAR to image transformation matrix is not provided')

        show_bboxes = LiDARInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0))

        show_multi_modality_result(
            img,
            None,
            show_bboxes,
            data['img_metas'][0][0]['lidar2img'],
            out_dir,
            file_name,
411
            box_mode='lidar',
412
            show=show)
413
414
415
416
417
418
419
    elif box_mode == Box3DMode.DEPTH:
        show_bboxes = DepthInstance3DBoxes(pred_bboxes, origin=(0.5, 0.5, 0))

        show_multi_modality_result(
            img,
            None,
            show_bboxes,
420
            None,
421
422
            out_dir,
            file_name,
423
            box_mode='depth',
424
            img_metas=data['img_metas'][0][0],
425
            show=show)
426
    elif box_mode == Box3DMode.CAM:
427
        if 'cam2img' not in data['img_metas'][0][0]:
428
429
430
431
432
433
434
435
436
437
            raise NotImplementedError(
                'camera intrinsic matrix is not provided')

        show_bboxes = CameraInstance3DBoxes(
            pred_bboxes, box_dim=pred_bboxes.shape[-1], origin=(0.5, 1.0, 0.5))

        show_multi_modality_result(
            img,
            None,
            show_bboxes,
438
            data['img_metas'][0][0]['cam2img'],
439
440
441
442
            out_dir,
            file_name,
            box_mode='camera',
            show=show)
443
444
445
446
    else:
        raise NotImplementedError(
            f'visualization of {box_mode} bbox is not supported')

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    return file_name


def show_result_meshlab(data,
                        result,
                        out_dir,
                        score_thr=0.0,
                        show=False,
                        snapshot=False,
                        task='det',
                        palette=None):
    """Show result by meshlab.

    Args:
        data (dict): Contain data from pipeline.
        result (dict): Predicted result from model.
        out_dir (str): Directory to save visualized result.
        score_thr (float): Minimum score of bboxes to be shown. Default: 0.0
        show (bool): Visualize the results online. Defaults to False.
        snapshot (bool): Whether to save the online results. Defaults to False.
        task (str): Distinguish which task result to visualize. Currently we
            support 3D detection, multi-modality detection and 3D segmentation.
            Defaults to 'det'.
        palette (list[list[int]]] | np.ndarray | None): The palette of
                segmentation map. If None is given, random palette will be
                generated. Defaults to None.
    """
474
    assert task in ['det', 'multi_modality-det', 'seg', 'mono-det'], \
475
476
477
        f'unsupported visualization task {task}'
    assert out_dir is not None, 'Expect out_dir, got none.'

478
    if task in ['det', 'multi_modality-det']:
479
480
481
        file_name = show_det_result_meshlab(data, result, out_dir, score_thr,
                                            show, snapshot)

482
    if task in ['seg']:
483
484
485
        file_name = show_seg_result_meshlab(data, result, out_dir, palette,
                                            show, snapshot)

486
    if task in ['multi_modality-det', 'mono-det']:
487
488
489
        file_name = show_proj_det_result_meshlab(data, result, out_dir,
                                                 score_thr, show, snapshot)

490
    return out_dir, file_name