transforms_3d.py 31.4 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import numpy as np
2
from mmcv import is_tuple_of
3
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
4

5
from mmdet3d.core import VoxelGenerator
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet3d.core.bbox import box_np_ops
7
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
8
from mmdet.datasets.pipelines import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
9
10
11
12
from ..registry import OBJECTSAMPLERS
from .data_augment_utils import noise_per_object_v3_


13
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
15
16
17
18
19
20
21
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
22
23
24
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
25
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
26
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
27
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
28
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
29
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
30
31
    """

wuyuefeng's avatar
wuyuefeng committed
32
33
34
35
36
37
38
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
39
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
40
41
42
43
44
45
46
47
48
49
50
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
51
52
53
54
55
56
57
58
59
60
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
61
        assert direction in ['horizontal', 'vertical']
62
63
64
65
66
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
67
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
68
69
            input_dict['points'] = input_dict[key].flip(
                direction, points=input_dict['points'])
zhangwenwei's avatar
zhangwenwei committed
70
71

    def __call__(self, input_dict):
72
73
74
75
76
77
78
79
80
81
82
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
83
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
84
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
85

zhangwenwei's avatar
zhangwenwei committed
86
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
87
88
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
89
        else:
wuyuefeng's avatar
wuyuefeng committed
90
91
92
93
94
95
96
97
98
99
100
101
102
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
zhangwenwei's avatar
zhangwenwei committed
103
104
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
105
    def __repr__(self):
106
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
107
108
        repr_str = self.__class__.__name__
        repr_str += '(sync_2d={},'.format(self.sync_2d)
yinchimaoliang's avatar
yinchimaoliang committed
109
        repr_str += 'flip_ratio_bev_vertical={})'.format(
wuyuefeng's avatar
wuyuefeng committed
110
111
            self.flip_ratio_bev_vertical)
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
112

zhangwenwei's avatar
zhangwenwei committed
113

114
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
115
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
116
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
117
118
119
120
121

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
122
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
123
    """
zhangwenwei's avatar
zhangwenwei committed
124
125
126
127
128
129
130
131
132
133

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
134
135
136
137
138
139
140
141
142
        """Remove the points in the sampled bounding boxes.

        Args:
            points (np.ndarray): Input point cloud array.
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
143
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
144
145
146
147
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
148
149
150
151
152
153
154
155
156
157
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
158
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
159
160
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
161
162
163
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
164
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
165
166
167
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
168
169
170
171
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
172
173
        else:
            sampled_dict = self.db_sampler.sample_all(
174
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
175
176
177
178

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
179
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
180

zhangwenwei's avatar
zhangwenwei committed
181
182
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
183
184
185
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
186

zhangwenwei's avatar
zhangwenwei committed
187
188
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
189
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
190
191
192
193
194

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
195

zhangwenwei's avatar
zhangwenwei committed
196
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
197
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
198
199

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
200
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
zhangwenwei's avatar
zhangwenwei committed
201
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
202

zhangwenwei's avatar
zhangwenwei committed
203
204
205
        return input_dict

    def __repr__(self):
206
        """str: Return a string that describes the module."""
207
208
209
210
211
212
213
214
215
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
216
217


218
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
219
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
220
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
221
222

    Args:
223
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
224
225
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
226
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
227
            Defaults to [0.0, 0.0].
228
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
229
230
231
232
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
233
234

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
235
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
236
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
237
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
238
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
239
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
240
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
241
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
242
243
244
        self.num_try = num_try

    def __call__(self, input_dict):
245
246
247
248
249
250
251
252
253
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
254
255
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
256

zhangwenwei's avatar
zhangwenwei committed
257
        # TODO: check this inplace function
258
        numpy_box = gt_bboxes_3d.tensor.numpy()
259
260
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
261
        noise_per_object_v3_(
262
            numpy_box,
263
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
264
265
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
266
267
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
268
269

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
270
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
271
272
273
        return input_dict

    def __repr__(self):
274
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
275
276
        repr_str = self.__class__.__name__
        repr_str += '(num_try={},'.format(self.num_try)
zhangwenwei's avatar
zhangwenwei committed
277
        repr_str += ' translation_std={},'.format(self.translation_std)
zhangwenwei's avatar
zhangwenwei committed
278
        repr_str += ' global_rot_range={},'.format(self.global_rot_range)
zhangwenwei's avatar
zhangwenwei committed
279
        repr_str += ' rot_range={})'.format(self.rot_range)
zhangwenwei's avatar
zhangwenwei committed
280
281
282
        return repr_str


283
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
284
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
285
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
286
287
288

    Args:
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
289
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
zhangwenwei's avatar
zhangwenwei committed
290
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
291
            Defaults to [0.95, 1.05].
zhangwenwei's avatar
zhangwenwei committed
292
293
294
        translation_std (list[float]): The standard deviation of ranslation
            noise. This apply random translation to a scene by a noise, which
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
295
296
            is set by ``translation_std``. Defaults to [0, 0, 0]
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
297
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
298
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
299
    """
zhangwenwei's avatar
zhangwenwei committed
300
301

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
302
303
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
304
305
                 translation_std=[0, 0, 0],
                 shift_height=False):
zhangwenwei's avatar
zhangwenwei committed
306
307
308
        self.rot_range = rot_range
        self.scale_ratio_range = scale_ratio_range
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
309
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
310
311

    def _trans_bbox_points(self, input_dict):
312
313
314
315
316
317
318
319
320
321
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
322
323
324
325
326
327
328
329
330
331
        if not isinstance(self.translation_std, (list, tuple, np.ndarray)):
            translation_std = [
                self.translation_std, self.translation_std,
                self.translation_std
            ]
        else:
            translation_std = self.translation_std
        translation_std = np.array(translation_std, dtype=np.float32)
        trans_factor = np.random.normal(scale=translation_std, size=3).T

332
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
333
334
335
336
337
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
338
339
340
341
342
343
344
345
346
347
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
348
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
349
350
351
        if not isinstance(rotation, list):
            rotation = [-rotation, rotation]
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
352
353

        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
354
355
356
357
358
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
359
        # input_dict['points_instance'].rotate(noise_rotation)
360

zhangwenwei's avatar
zhangwenwei committed
361
    def _scale_bbox_points(self, input_dict):
362
363
364
365
366
367
368
369
370
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
371
        scale = input_dict['pcd_scale_factor']
372
373
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
374
        if self.shift_height:
375
376
377
            assert 'height' in points.attribute_dims.keys()
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
378

zhangwenwei's avatar
zhangwenwei committed
379
380
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
381

zhangwenwei's avatar
zhangwenwei committed
382
    def _random_scale(self, input_dict):
383
384
385
386
387
388
389
390
391
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
392
393
394
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
395
396

    def __call__(self, input_dict):
397
398
399
400
401
402
403
404
405
406
407
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
408
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
409

zhangwenwei's avatar
zhangwenwei committed
410
411
412
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
413

zhangwenwei's avatar
zhangwenwei committed
414
        self._trans_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
415
416
417
        return input_dict

    def __repr__(self):
418
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
419
        repr_str = self.__class__.__name__
zhangwenwei's avatar
zhangwenwei committed
420
421
422
        repr_str += '(rot_range={},'.format(self.rot_range)
        repr_str += ' scale_ratio_range={},'.format(self.scale_ratio_range)
        repr_str += ' translation_std={})'.format(self.translation_std)
wuyuefeng's avatar
wuyuefeng committed
423
        repr_str += ' shift_height={})'.format(self.shift_height)
zhangwenwei's avatar
zhangwenwei committed
424
425
426
        return repr_str


427
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
428
class PointShuffle(object):
429
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
430
431

    def __call__(self, input_dict):
432
433
434
435
436
437
438
439
440
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
441
        input_dict['points'].shuffle()
zhangwenwei's avatar
zhangwenwei committed
442
443
444
445
446
447
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


448
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
449
class ObjectRangeFilter(object):
450
451
452
453
454
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
455
456
457
458
459
460

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
        self.bev_range = self.pcd_range[[0, 1, 3, 4]]

    def __call__(self, input_dict):
461
462
463
464
465
466
467
468
469
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
470
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
471
        gt_labels_3d = input_dict['gt_labels_3d']
472
        mask = gt_bboxes_3d.in_range_bev(self.bev_range)
zhangwenwei's avatar
zhangwenwei committed
473
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
474
475
476
477
478
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
479
480

        # limit rad to [-pi, pi]
481
482
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
483
484
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
485
486
487
        return input_dict

    def __repr__(self):
488
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
489
490
491
492
493
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str


494
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
495
class PointsRangeFilter(object):
496
497
498
499
500
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
501
502

    def __init__(self, point_cloud_range):
503
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
504
505

    def __call__(self, input_dict):
506
507
508
509
510
511
512
513
514
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
515
        points = input_dict['points']
516
517
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
518
519
520
521
        input_dict['points'] = clean_points
        return input_dict

    def __repr__(self):
522
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
523
524
525
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
526
527
528
529


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
530
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
531
532

    Args:
liyinhao's avatar
liyinhao committed
533
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
534
535
536
537
538
539
540
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
541
542
543
544
545
546
547
548
549
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
550
551
552
553
554
555
556
557
558
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
559
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
560
561
562
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588


@PIPELINES.register_module()
class IndoorPointSample(object):
    """Indoor point sample.

    Sampling data to a certain number.

    Args:
        name (str): Name of the dataset.
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, num_points):
        self.num_points = num_points

    def points_random_sampling(self,
                               points,
                               num_samples,
                               replace=None,
                               return_choices=False):
        """Points random sampling.

        Sample points to a certain number.

        Args:
589
            points (np.ndarray): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
590
591
            num_samples (int): Number of samples to be sampled.
            replace (bool): Whether the sample is with or without replacement.
liyinhao's avatar
liyinhao committed
592
593
            Defaults to None.
            return_choices (bool): Whether return choice. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
594
595

        Returns:
596
597
598
599
            tuple[np.ndarray] | np.ndarray:

                - points (np.ndarray): 3D Points.
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
600
601
602
603
604
605
606
607
608
609
610
        """
        if replace is None:
            replace = (points.shape[0] < num_samples)
        choices = np.random.choice(
            points.shape[0], num_samples, replace=replace)
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
611
612
613
614
615
616
617
618
619
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
620
621
622
        points = results['points']
        points, choices = self.points_random_sampling(
            points, self.num_points, return_choices=True)
623

wuyuefeng's avatar
wuyuefeng committed
624
625
626
627
628
629
630
631
632
633
634
635
636
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)
        results['points'] = points

        if pts_instance_mask is not None and pts_semantic_mask is not None:
            pts_instance_mask = pts_instance_mask[choices]
            pts_semantic_mask = pts_semantic_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
637
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
638
639
640
        repr_str = self.__class__.__name__
        repr_str += '(num_points={})'.format(self.num_points)
        return repr_str
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

        gt_bboxes_3d_np = gt_bboxes_3d.tensor.numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.numpy()
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
679
680
681
        points_numpy = points.tensor.numpy()
        foreground_masks = box_np_ops.points_in_rbbox(points_numpy,
                                                      gt_bboxes_3d_np)
682
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
683
            points_numpy, enlarged_gt_bboxes_3d)
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += '(bbox_enlarge_range={})'.format(
            self.bbox_enlarge_range.tolist())
        return repr_str
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
        time_dim (int): Index that indicate the time dimention
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
            point_dim (int): The dimention of each points

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
777
778
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
779
780
781
782
783
784
785
786
787
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

788
        points_numpy = np.concatenate(extra_channel, axis=-1)
789
790
791
792
793

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
794
795
796
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
797
798
799
800
801
802
803
804
805
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
806
                                               points_numpy.shape[1])
807
808
809
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
810
                                                     points_numpy.shape[1])
811

812
813
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
814
        else:
815
            points_numpy = cur_sweep_points
816
817

        if self.cur_voxel_generator._max_num_points == 1:
818
819
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
820
821
822

        # Restore the correspoinding seg and mask fields
        for key, dim_index in map_fields2dim:
823
            results[key] = points_numpy[..., dim_index]
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str