det3d_dataset.py 16 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from os import path as osp
from typing import Callable, List, Optional, Union

6
import mmengine
jshilong's avatar
jshilong committed
7
import numpy as np
8
import torch
jshilong's avatar
jshilong committed
9
from mmengine.dataset import BaseDataset
10
11
from mmengine.logging import print_log
from terminaltables import AsciiTable
jshilong's avatar
jshilong committed
12
13

from mmdet3d.datasets import DATASETS
zhangshilong's avatar
zhangshilong committed
14
from mmdet3d.structures import get_box_type
jshilong's avatar
jshilong committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


@DATASETS.register_module()
class Det3DDataset(BaseDataset):
    """Base Class of 3D dataset.

    This is the base dataset of SUNRGB-D, ScanNet, nuScenes, and KITTI
    dataset.
    # TODO: doc link here for the standard data format

    Args:
        data_root (str, optional): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to None.
        ann_file (str): Annotation file path. Defaults to ''.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_prefix (dict, optional): Prefix for training data. Defaults to
32
            dict(pts='velodyne', img='').
jshilong's avatar
jshilong committed
33
34
35
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
36
            as input, it usually has following keys:
jshilong's avatar
jshilong committed
37
38
39
40

                - use_camera: bool
                - use_lidar: bool
            Defaults to `dict(use_lidar=True, use_camera=False)`
jshilong's avatar
jshilong committed
41
42
        default_cam_key (str, optional): The default camera name adopted.
            Defaults to None.
jshilong's avatar
jshilong committed
43
44
45
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
46
            Defaults to 'LiDAR'. Available options includes:
jshilong's avatar
jshilong committed
47
48
49
50
51
52
53
54

            - 'LiDAR': Box in LiDAR coordinates, usually for
              outdoor point cloud 3d detection.
            - 'Depth': Box in depth coordinates, usually for
              indoor point cloud 3d detection.
            - 'Camera': Box in camera coordinates, usually
              for vision-based 3d detection.

55
        filter_empty_gt (bool, optional): Whether to filter the data with
jshilong's avatar
jshilong committed
56
            empty GT. Defaults to True.
57
        test_mode (bool, optional): Whether the dataset is in test mode.
jshilong's avatar
jshilong committed
58
            Defaults to False.
59
60
61
62
63
        load_eval_anns (bool, optional): Whether to load annotations
            in test_mode, the annotation will be save in `eval_ann_infos`,
            which can be used in Evaluator. Defaults to True.
        file_client_args (dict, optional): Configuration of file client.
            Defaults to dict(backend='disk').
64
65
66
        show_ins_var (bool, optional): For debug purpose. Whether to show
            variation of the number of instances before and after through
            pipeline. Defaults to False.
jshilong's avatar
jshilong committed
67
68
69
70
71
72
73
74
75
    """

    def __init__(self,
                 data_root: Optional[str] = None,
                 ann_file: str = '',
                 metainfo: Optional[dict] = None,
                 data_prefix: dict = dict(pts='velodyne', img=''),
                 pipeline: List[Union[dict, Callable]] = [],
                 modality: dict = dict(use_lidar=True, use_camera=False),
jshilong's avatar
jshilong committed
76
                 default_cam_key: str = None,
jshilong's avatar
jshilong committed
77
78
79
                 box_type_3d: dict = 'LiDAR',
                 filter_empty_gt: bool = True,
                 test_mode: bool = False,
jshilong's avatar
jshilong committed
80
                 load_eval_anns=True,
jshilong's avatar
jshilong committed
81
                 file_client_args: dict = dict(backend='disk'),
82
                 show_ins_var: bool = False,
83
                 **kwargs) -> None:
jshilong's avatar
jshilong committed
84
        # init file client
85
        self.file_client = mmengine.FileClient(**file_client_args)
jshilong's avatar
jshilong committed
86
        self.filter_empty_gt = filter_empty_gt
jshilong's avatar
jshilong committed
87
        self.load_eval_anns = load_eval_anns
jshilong's avatar
jshilong committed
88
89
90
91
92
93
94
95
96
        _default_modality_keys = ('use_lidar', 'use_camera')
        if modality is None:
            modality = dict()

        # Defaults to False if not specify
        for key in _default_modality_keys:
            if key not in modality:
                modality[key] = False
        self.modality = modality
jshilong's avatar
jshilong committed
97
        self.default_cam_key = default_cam_key
jshilong's avatar
jshilong committed
98
99
        assert self.modality['use_lidar'] or self.modality['use_camera'], (
            'Please specify the `modality` (`use_lidar` '
jshilong's avatar
jshilong committed
100
            f', `use_camera`) for {self.__class__.__name__}')
jshilong's avatar
jshilong committed
101
102

        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)
VVsssssk's avatar
VVsssssk committed
103

jshilong's avatar
jshilong committed
104
105
106
107
108
109
110
111
112
113
114
        if metainfo is not None and 'CLASSES' in metainfo:
            # we allow to train on subset of self.METAINFO['CLASSES']
            # map unselected labels to -1
            self.label_mapping = {
                i: -1
                for i in range(len(self.METAINFO['CLASSES']))
            }
            self.label_mapping[-1] = -1
            for label_idx, name in enumerate(metainfo['CLASSES']):
                ori_label = self.METAINFO['CLASSES'].index(name)
                self.label_mapping[ori_label] = label_idx
115
116

            self.num_ins_per_cat = {name: 0 for name in metainfo['CLASSES']}
jshilong's avatar
jshilong committed
117
118
119
120
121
122
123
        else:
            self.label_mapping = {
                i: i
                for i in range(len(self.METAINFO['CLASSES']))
            }
            self.label_mapping[-1] = -1

124
125
126
127
128
            self.num_ins_per_cat = {
                name: 0
                for name in self.METAINFO['CLASSES']
            }

jshilong's avatar
jshilong committed
129
130
131
132
133
134
135
136
137
        super().__init__(
            ann_file=ann_file,
            metainfo=metainfo,
            data_root=data_root,
            data_prefix=data_prefix,
            pipeline=pipeline,
            test_mode=test_mode,
            **kwargs)

VVsssssk's avatar
VVsssssk committed
138
139
140
141
        # can be accessed by other component in runner
        self.metainfo['box_type_3d'] = box_type_3d
        self.metainfo['label_mapping'] = self.label_mapping

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        # used for showing variation of the number of instances before and
        # after through the pipeline
        self.show_ins_var = show_ins_var

        # show statistics of this dataset
        print_log('-' * 30, 'current')
        print_log(f'The length of the dataset: {len(self)}', 'current')
        content_show = [['category', 'number']]
        for cat_name, num in self.num_ins_per_cat.items():
            content_show.append([cat_name, num])
        table = AsciiTable(content_show)
        print_log(
            f'The number of instances per category in the dataset:\n{table.table}',  # noqa: E501
            'current')

    def _remove_dontcare(self, ann_info):
jshilong's avatar
jshilong committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        """Remove annotations that do not need to be cared.

        -1 indicate dontcare in MMDet3d.

        Args:
            ann_info (dict): Dict of annotation infos. The
                instance with label `-1` will be removed.

        Returns:
            dict: Annotations after filtering.
        """
        img_filtered_annotations = {}
        filter_mask = ann_info['gt_labels_3d'] > -1
        for key in ann_info.keys():
zhangshilong's avatar
zhangshilong committed
172
173
174
175
            if key != 'instances':
                img_filtered_annotations[key] = (ann_info[key][filter_mask])
            else:
                img_filtered_annotations[key] = ann_info[key]
jshilong's avatar
jshilong committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        return img_filtered_annotations

    def get_ann_info(self, index: int) -> dict:
        """Get annotation info according to the given index.

        Use index to get the corresponding annotations, thus the
        evalhook could use this api.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information.
        """
        data_info = self.get_data_info(index)
        # test model
        if 'ann_info' not in data_info:
            ann_info = self.parse_ann_info(data_info)
        else:
            ann_info = data_info['ann_info']

        return ann_info

199
    def parse_ann_info(self, info: dict) -> Optional[dict]:
jshilong's avatar
jshilong committed
200
201
202
203
204
205
206
207
208
209
210
        """Process the `instances` in data info to `ann_info`

        In `Custom3DDataset`, we simply concatenate all the field
        in `instances` to `np.ndarray`, you can do the specific
        process in subclass. You have to convert `gt_bboxes_3d`
        to different coordinates according to the task.

        Args:
            info (dict): Info dict.

        Returns:
211
            dict | None: Processed `ann_info`
jshilong's avatar
jshilong committed
212
213
        """
        # add s or gt prefix for most keys after concat
zhangshilong's avatar
zhangshilong committed
214
215
        # we only process 3d annotations here, the corresponding
        # 2d annotation process is in the `LoadAnnotations3D`
zhangshilong's avatar
zhangshilong committed
216
        # in `transforms`
jshilong's avatar
jshilong committed
217
218
        name_mapping = {
            'bbox_label_3d': 'gt_labels_3d',
219
220
            'bbox_label': 'gt_bboxes_labels',
            'bbox': 'gt_bboxes',
jshilong's avatar
jshilong committed
221
222
223
            'bbox_3d': 'gt_bboxes_3d',
            'depth': 'depths',
            'center_2d': 'centers_2d',
ChaimZhu's avatar
ChaimZhu committed
224
225
            'attr_label': 'attr_labels',
            'velocity': 'velocities',
jshilong's avatar
jshilong committed
226
227
        }
        instances = info['instances']
228
229
230
231
232
233
234
        # empty gt
        if len(instances) == 0:
            return None
        else:
            keys = list(instances[0].keys())
            ann_info = dict()
            for ann_name in keys:
zhangshilong's avatar
zhangshilong committed
235
236
                temp_anns = [item[ann_name] for item in instances]
                # map the original dataset label to training label
237
                if 'label' in ann_name and ann_name != 'attr_label':
zhangshilong's avatar
zhangshilong committed
238
239
240
                    temp_anns = [
                        self.label_mapping[item] for item in temp_anns
                    ]
241
                if ann_name in name_mapping:
ChaimZhu's avatar
ChaimZhu committed
242
243
244
                    mapped_ann_name = name_mapping[ann_name]
                else:
                    mapped_ann_name = ann_name
245
246
247

                if 'label' in ann_name:
                    temp_anns = np.array(temp_anns).astype(np.int64)
ChaimZhu's avatar
ChaimZhu committed
248
                elif ann_name in name_mapping:
249
                    temp_anns = np.array(temp_anns).astype(np.float32)
ChaimZhu's avatar
ChaimZhu committed
250
251
                else:
                    temp_anns = np.array(temp_anns)
252

ChaimZhu's avatar
ChaimZhu committed
253
                ann_info[mapped_ann_name] = temp_anns
zhangshilong's avatar
zhangshilong committed
254
            ann_info['instances'] = info['instances']
255
256
257
258
259

            for label in ann_info['gt_labels_3d']:
                cat_name = self.metainfo['CLASSES'][label]
                self.num_ins_per_cat[cat_name] += 1

jshilong's avatar
jshilong committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        return ann_info

    def parse_data_info(self, info: dict) -> dict:
        """Process the raw data info.

        Convert all relative path of needed modality data file to
        the absolute path. And process
        the `instances` field to `ann_info` in training stage.

        Args:
            info (dict): Raw info dict.

        Returns:
            dict: Has `ann_info` in training stage. And
            all path has been converted to absolute path.
        """

        if self.modality['use_lidar']:
            info['lidar_points']['lidar_path'] = \
                osp.join(
                    self.data_prefix.get('pts', ''),
                    info['lidar_points']['lidar_path'])

ChaimZhu's avatar
ChaimZhu committed
283
            info['num_pts_feats'] = info['lidar_points']['num_pts_feats']
jshilong's avatar
jshilong committed
284
            info['lidar_path'] = info['lidar_points']['lidar_path']
VVsssssk's avatar
VVsssssk committed
285
286
287
288
289
290
291
292
293
294
            if 'lidar_sweeps' in info:
                for sweep in info['lidar_sweeps']:
                    file_suffix = sweep['lidar_points']['lidar_path'].split(
                        '/')[-1]
                    if 'samples' in sweep['lidar_points']['lidar_path']:
                        sweep['lidar_points']['lidar_path'] = osp.join(
                            self.data_prefix['pts'], file_suffix)
                    else:
                        sweep['lidar_points']['lidar_path'] = osp.join(
                            self.data_prefix['sweeps'], file_suffix)
jshilong's avatar
jshilong committed
295

jshilong's avatar
jshilong committed
296
297
298
        if self.modality['use_camera']:
            for cam_id, img_info in info['images'].items():
                if 'img_path' in img_info:
VVsssssk's avatar
VVsssssk committed
299
300
301
302
303
304
                    if cam_id in self.data_prefix:
                        cam_prefix = self.data_prefix[cam_id]
                    else:
                        cam_prefix = self.data_prefix.get('img', '')
                    img_info['img_path'] = osp.join(cam_prefix,
                                                    img_info['img_path'])
jshilong's avatar
jshilong committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
            if self.default_cam_key is not None:
                info['img_path'] = info['images'][
                    self.default_cam_key]['img_path']
                if 'lidar2cam' in info['images'][self.default_cam_key]:
                    info['lidar2cam'] = np.array(
                        info['images'][self.default_cam_key]['lidar2cam'])
                if 'cam2img' in info['images'][self.default_cam_key]:
                    info['cam2img'] = np.array(
                        info['images'][self.default_cam_key]['cam2img'])
                if 'lidar2img' in info['images'][self.default_cam_key]:
                    info['lidar2img'] = np.array(
                        info['images'][self.default_cam_key]['lidar2img'])
                else:
                    info['lidar2img'] = info['cam2img'] @ info['lidar2cam']
jshilong's avatar
jshilong committed
319
320

        if not self.test_mode:
Tai-Wang's avatar
Tai-Wang committed
321
            # used in training
jshilong's avatar
jshilong committed
322
            info['ann_info'] = self.parse_ann_info(info)
jshilong's avatar
jshilong committed
323
324
        if self.test_mode and self.load_eval_anns:
            info['eval_ann_info'] = self.parse_ann_info(info)
jshilong's avatar
jshilong committed
325
326
327

        return info

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    def _show_ins_var(self, old_labels: np.ndarray, new_labels: torch.Tensor):
        """Show variation of the number of instances before and after through
        the pipeline.

        Args:
            old_labels (np.ndarray): The labels before through the pipeline.
            new_labels (torch.Tensor): The labels after through the pipeline.
        """
        ori_num_per_cat = dict()
        for label in old_labels:
            cat_name = self.metainfo['CLASSES'][label]
            ori_num_per_cat[cat_name] = ori_num_per_cat.get(cat_name, 0) + 1
        new_num_per_cat = dict()
        for label in new_labels:
            cat_name = self.metainfo['CLASSES'][label]
            new_num_per_cat[cat_name] = new_num_per_cat.get(cat_name, 0) + 1
        content_show = [['category', 'new number', 'ori number']]
        for cat_name, num in ori_num_per_cat.items():
            new_num = new_num_per_cat.get(cat_name, 0)
            content_show.append([cat_name, new_num, num])
        table = AsciiTable(content_show)
        print_log(
            'The number of instances per category after and before '
            f'through pipeline:\n{table.table}', 'current')

353
    def prepare_data(self, index: int) -> Optional[dict]:
jshilong's avatar
jshilong committed
354
355
356
357
358
359
360
361
        """Data preparation for both training and testing stage.

        Called by `__getitem__`  of dataset.

        Args:
            index (int): Index for accessing the target data.

        Returns:
362
            dict | None: Data dict of the corresponding index.
jshilong's avatar
jshilong committed
363
        """
364
        ori_input_dict = self.get_data_info(index)
jshilong's avatar
jshilong committed
365
366

        # deepcopy here to avoid inplace modification in pipeline.
367
        input_dict = copy.deepcopy(ori_input_dict)
jshilong's avatar
jshilong committed
368
369
370
371
372
373
374
375
376
377
378
379

        # box_type_3d (str): 3D box type.
        input_dict['box_type_3d'] = self.box_type_3d
        # box_mode_3d (str): 3D box mode.
        input_dict['box_mode_3d'] = self.box_mode_3d

        # pre-pipline return None to random another in `__getitem__`
        if not self.test_mode and self.filter_empty_gt:
            if len(input_dict['ann_info']['gt_labels_3d']) == 0:
                return None

        example = self.pipeline(input_dict)
380

jshilong's avatar
jshilong committed
381
382
383
        if not self.test_mode and self.filter_empty_gt:
            # after pipeline drop the example with empty annotations
            # return None to random another in `__getitem__`
384
            if example is None or len(
385
                    example['data_samples'].gt_instances_3d.labels_3d) == 0:
jshilong's avatar
jshilong committed
386
                return None
387
388
389
390
391
392

        if self.show_ins_var:
            self._show_ins_var(
                ori_input_dict['ann_info']['gt_labels_3d'],
                example['data_samples'].gt_instances_3d.labels_3d)

jshilong's avatar
jshilong committed
393
        return example
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    def get_cat_ids(self, idx: int) -> List[int]:
        """Get category ids by index. Dataset wrapped by ClassBalancedDataset
        must implement this method.

        The ``CBGSDataset`` or ``ClassBalancedDataset``requires a subclass
        which implements this method.

        Args:
            idx (int): The index of data.

        Returns:
            set[int]: All categories in the sample of specified index.
        """
        info = self.get_data_info(idx)
        gt_labels = info['ann_info']['gt_labels_3d'].tolist()
        return set(gt_labels)