test_apis.py 15.3 KB
Newer Older
1
2
import numpy as np
import os
yinchimaoliang's avatar
yinchimaoliang committed
3
import pytest
4
import tempfile
yinchimaoliang's avatar
yinchimaoliang committed
5
6
7
8
import torch
from mmcv.parallel import MMDataParallel
from os.path import dirname, exists, join

9
from mmdet3d.apis import (convert_SyncBN, inference_detector,
10
                          inference_mono_3d_detector,
11
12
13
                          inference_multi_modality_detector,
                          inference_segmentor, init_model, show_result_meshlab,
                          single_gpu_test)
14
from mmdet3d.core import Box3DMode
15
16
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes)
yinchimaoliang's avatar
yinchimaoliang committed
17
from mmdet3d.datasets import build_dataloader, build_dataset
18
from mmdet3d.models import build_model
yinchimaoliang's avatar
yinchimaoliang committed
19
20
21
22
23


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
24
25
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
yinchimaoliang's avatar
yinchimaoliang committed
26
27
    except NameError:
        # For IPython development when this __file__ is not defined
28
29
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
yinchimaoliang's avatar
yinchimaoliang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def test_convert_SyncBN():
    cfg = _get_config_module(
        'pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py')
    model_cfg = cfg.model
    convert_SyncBN(model_cfg)
    assert model_cfg['pts_voxel_encoder']['norm_cfg']['type'] == 'BN1d'
    assert model_cfg['pts_backbone']['norm_cfg']['type'] == 'BN2d'
    assert model_cfg['pts_neck']['norm_cfg']['type'] == 'BN2d'


def test_show_result_meshlab():
    pcd = 'tests/data/nuscenes/samples/LIDAR_TOP/n015-2018-08-02-17-16-37+' \
              '0800__LIDAR_TOP__1533201470948018.pcd.bin'
    box_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([0])
    scores_3d = torch.tensor([0.5])
    points = np.random.rand(100, 4)
    img_meta = dict(
        pts_filename=pcd, boxes_3d=box_3d, box_mode_3d=Box3DMode.LIDAR)
    data = dict(points=[[torch.tensor(points)]], img_metas=[[img_meta]])
    result = [
        dict(
            pts_bbox=dict(
                boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d))
    ]
72
73
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
74
    out_dir, file_name = show_result_meshlab(data, result, temp_out_dir)
75
76
77
78
79
80
81
82
83
84
85
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    tmp_dir.cleanup()

    # test multi-modality show
86
    # indoor scene
87
88
89
90
91
92
    pcd = 'tests/data/sunrgbd/points/000001.bin'
    filename = 'tests/data/sunrgbd/sunrgbd_trainval/image/000001.jpg'
    box_3d = DepthInstance3DBoxes(
        torch.tensor(
            [[-1.1580, 3.3041, -0.9961, 0.3829, 0.4647, 0.5574, 1.1213]]))
    img = np.random.randn(1, 3, 608, 832)
93
94
95
96
97
98
99
    k_mat = np.array([[529.5000, 0.0000, 365.0000],
                      [0.0000, 529.5000, 265.0000], [0.0000, 0.0000, 1.0000]])
    rt_mat = np.array([[0.9980, 0.0058, -0.0634], [0.0058, 0.9835, 0.1808],
                       [0.0634, -0.1808, 0.9815]])
    rt_mat = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) @ rt_mat.transpose(
        1, 0)
    depth2img = k_mat @ rt_mat
100
101
    img_meta = dict(
        filename=filename,
102
        depth2img=depth2img,
103
104
105
106
107
108
109
110
111
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        box_mode_3d=Box3DMode.DEPTH,
        box_type_3d=DepthInstance3DBoxes,
        pcd_trans=np.array([0., 0., 0.]),
        pcd_scale_factor=1.0,
        pts_filename=pcd,
        transformation_3d_flow=['R', 'S', 'T'])
    data = dict(
112
        points=[[torch.tensor(points)]], img_metas=[[img_meta]], img=[img])
113
    result = [dict(boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d)]
114
115
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
116
117
    out_dir, file_name = show_result_meshlab(
        data, result, temp_out_dir, 0.3, task='multi_modality-det')
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_png = file_name + '_img.png'
    expected_outfile_proj = file_name + '_pred.png'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    expected_outfile_png_path = os.path.join(out_dir, file_name,
                                             expected_outfile_png)
    expected_outfile_proj_path = os.path.join(out_dir, file_name,
                                              expected_outfile_proj)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    assert os.path.exists(expected_outfile_png_path)
    assert os.path.exists(expected_outfile_proj_path)
    tmp_dir.cleanup()
    # outdoor scene
    pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin'
    filename = 'tests/data/kitti/training/image_2/000000.png'
    box_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[6.4495, -3.9097, -1.7409, 1.5063, 3.1819, 1.4716, 1.8782]]))
    img = np.random.randn(1, 3, 384, 1280)
    lidar2img = np.array(
        [[6.09695435e+02, -7.21421631e+02, -1.25125790e+00, -1.23041824e+02],
         [1.80384201e+02, 7.64479828e+00, -7.19651550e+02, -1.01016693e+02],
         [9.99945343e-01, 1.24365499e-04, 1.04513029e-02, -2.69386917e-01],
         [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
    img_meta = dict(
        filename=filename,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        box_mode_3d=Box3DMode.LIDAR,
        box_type_3d=LiDARInstance3DBoxes,
        pcd_trans=np.array([0., 0., 0.]),
        pcd_scale_factor=1.0,
        pts_filename=pcd,
        lidar2img=lidar2img)
    data = dict(
        points=[[torch.tensor(points)]], img_metas=[[img_meta]], img=[img])
    result = [
        dict(
            pts_bbox=dict(
                boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d))
    ]
164
165
    out_dir, file_name = show_result_meshlab(
        data, result, temp_out_dir, 0.1, task='multi_modality-det')
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_png = file_name + '_img.png'
    expected_outfile_proj = file_name + '_pred.png'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    expected_outfile_png_path = os.path.join(out_dir, file_name,
                                             expected_outfile_png)
    expected_outfile_proj_path = os.path.join(out_dir, file_name,
                                              expected_outfile_proj)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    assert os.path.exists(expected_outfile_png_path)
    assert os.path.exists(expected_outfile_proj_path)
    tmp_dir.cleanup()
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    # test mono-3d show
    filename = 'tests/data/nuscenes/samples/CAM_BACK_LEFT/n015-2018-' \
               '07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg'
    box_3d = CameraInstance3DBoxes(
        torch.tensor(
            [[6.4495, -3.9097, -1.7409, 1.5063, 3.1819, 1.4716, 1.8782]]))
    img = np.random.randn(1, 3, 384, 1280)
    cam_intrinsic = np.array([[100.0, 0.0, 50.0], [0.0, 100.0, 50.0],
                              [0.0, 0.0, 1.0]])
    img_meta = dict(
        filename=filename,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        box_mode_3d=Box3DMode.CAM,
        box_type_3d=CameraInstance3DBoxes,
        pcd_trans=np.array([0., 0., 0.]),
        pcd_scale_factor=1.0,
        cam_intrinsic=cam_intrinsic)
    data = dict(
        points=[[torch.tensor(points)]], img_metas=[[img_meta]], img=[img])
    result = [
        dict(
            img_bbox=dict(
                boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d))
    ]
    out_dir, file_name = show_result_meshlab(
        data, result, temp_out_dir, 0.1, task='mono-det')
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
    expected_outfile_png = file_name + '_img.png'
    expected_outfile_proj = file_name + '_pred.png'
    expected_outfile_png_path = os.path.join(out_dir, file_name,
                                             expected_outfile_png)
    expected_outfile_proj_path = os.path.join(out_dir, file_name,
                                              expected_outfile_proj)
    assert os.path.exists(expected_outfile_png_path)
    assert os.path.exists(expected_outfile_proj_path)
    tmp_dir.cleanup()
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    # test seg show
    pcd = 'tests/data/scannet/points/scene0000_00.bin'
    points = np.random.rand(100, 6)
    img_meta = dict(pts_filename=pcd)
    data = dict(points=[[torch.tensor(points)]], img_metas=[[img_meta]])
    pred_seg = torch.randint(0, 20, (100, ))
    result = [dict(semantic_mask=pred_seg)]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
    out_dir, file_name = show_result_meshlab(
        data, result, temp_out_dir, task='seg')
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    tmp_dir.cleanup()

245

yinchimaoliang's avatar
yinchimaoliang committed
246
def test_inference_detector():
247
248
249
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

yinchimaoliang's avatar
yinchimaoliang committed
250
251
252
    pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin'
    detector_cfg = 'configs/pointpillars/hv_pointpillars_secfpn_' \
                   '6x8_160e_kitti-3d-3class.py'
253
    detector = init_model(detector_cfg, device='cuda:0')
yinchimaoliang's avatar
yinchimaoliang committed
254
    results = inference_detector(detector, pcd)
255
256
257
    bboxes_3d = results[0][0]['boxes_3d']
    scores_3d = results[0][0]['scores_3d']
    labels_3d = results[0][0]['labels_3d']
yinchimaoliang's avatar
yinchimaoliang committed
258
259
260
261
262
263
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def test_inference_multi_modality_detector():
    # these two multi-modality models both only have GPU implementations
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    # indoor scene
    pcd = 'tests/data/sunrgbd/points/000001.bin'
    img = 'tests/data/sunrgbd/sunrgbd_trainval/image/000001.jpg'
    ann_file = 'tests/data/sunrgbd/sunrgbd_infos.pkl'
    detector_cfg = 'configs/imvotenet/imvotenet_stage2_'\
                   '16x8_sunrgbd-3d-10class.py'
    detector = init_model(detector_cfg, device='cuda:0')
    results = inference_multi_modality_detector(detector, pcd, img, ann_file)
    bboxes_3d = results[0][0]['boxes_3d']
    scores_3d = results[0][0]['scores_3d']
    labels_3d = results[0][0]['labels_3d']
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0

    # outdoor scene
    pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin'
    img = 'tests/data/kitti/training/image_2/000000.png'
    ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
    detector_cfg = 'configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_' \
                   '2x8_80e_kitti-3d-3class.py'
    detector = init_model(detector_cfg, device='cuda:0')
    results = inference_multi_modality_detector(detector, pcd, img, ann_file)
    bboxes_3d = results[0][0]['pts_bbox']['boxes_3d']
    scores_3d = results[0][0]['pts_bbox']['scores_3d']
    labels_3d = results[0][0]['pts_bbox']['labels_3d']
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def test_inference_mono_3d_detector():
    # FCOS3D only has GPU implementations
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    img = 'tests/data/nuscenes/samples/CAM_BACK_LEFT/' \
          'n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg'
    ann_file = 'tests/data/nuscenes/nus_infos_mono3d.coco.json'
    detector_cfg = 'configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_' \
                   '2x8_1x_nus-mono3d.py'
    detector = init_model(detector_cfg, device='cuda:0')
    results = inference_mono_3d_detector(detector, img, ann_file)
    bboxes_3d = results[0][0]['img_bbox']['boxes_3d']
    scores_3d = results[0][0]['img_bbox']['scores_3d']
    labels_3d = results[0][0]['img_bbox']['labels_3d']
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 9
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


321
322
323
324
325
326
def test_inference_segmentor():
    # PN2 only has GPU implementations
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    pcd = 'tests/data/scannet/points/scene0000_00.bin'
    segmentor_cfg = 'configs/pointnet2/pointnet2_ssg_' \
327
                    '16x2_cosine_200e_scannet_seg-3d-20class.py'
328
329
330
331
332
333
334
335
    segmentor = init_model(segmentor_cfg, device='cuda:0')
    results = inference_segmentor(segmentor, pcd)
    seg_3d = results[0][0]['semantic_mask']
    assert seg_3d.shape == torch.Size([100])
    assert seg_3d.min() >= 0
    assert seg_3d.max() <= 19


yinchimaoliang's avatar
yinchimaoliang committed
336
337
338
339
def test_single_gpu_test():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    cfg = _get_config_module('votenet/votenet_16x8_sunrgbd-3d-10class.py')
340
    cfg.model.train_cfg = None
341
    model = build_model(cfg.model, test_cfg=cfg.get('test_cfg'))
yinchimaoliang's avatar
yinchimaoliang committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    dataset_cfg = cfg.data.test
    dataset_cfg.data_root = './tests/data/sunrgbd'
    dataset_cfg.ann_file = 'tests/data/sunrgbd/sunrgbd_infos.pkl'
    dataset = build_dataset(dataset_cfg)
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=False,
        shuffle=False)
    model = MMDataParallel(model, device_ids=[0])
    results = single_gpu_test(model, data_loader)
    bboxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0