test_apis.py 9.27 KB
Newer Older
1
2
import numpy as np
import os
yinchimaoliang's avatar
yinchimaoliang committed
3
import pytest
4
import tempfile
yinchimaoliang's avatar
yinchimaoliang committed
5
6
7
8
import torch
from mmcv.parallel import MMDataParallel
from os.path import dirname, exists, join

9
10
11
from mmdet3d.apis import (convert_SyncBN, inference_detector, init_detector,
                          show_result_meshlab, single_gpu_test)
from mmdet3d.core import Box3DMode
12
from mmdet3d.core.bbox import DepthInstance3DBoxes, LiDARInstance3DBoxes
yinchimaoliang's avatar
yinchimaoliang committed
13
14
15
16
17
18
19
from mmdet3d.datasets import build_dataloader, build_dataset
from mmdet3d.models import build_detector


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
20
21
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
yinchimaoliang's avatar
yinchimaoliang committed
22
23
    except NameError:
        # For IPython development when this __file__ is not defined
24
25
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
yinchimaoliang's avatar
yinchimaoliang committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def test_convert_SyncBN():
    cfg = _get_config_module(
        'pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py')
    model_cfg = cfg.model
    convert_SyncBN(model_cfg)
    assert model_cfg['pts_voxel_encoder']['norm_cfg']['type'] == 'BN1d'
    assert model_cfg['pts_backbone']['norm_cfg']['type'] == 'BN2d'
    assert model_cfg['pts_neck']['norm_cfg']['type'] == 'BN2d'


def test_show_result_meshlab():
    pcd = 'tests/data/nuscenes/samples/LIDAR_TOP/n015-2018-08-02-17-16-37+' \
              '0800__LIDAR_TOP__1533201470948018.pcd.bin'
    box_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
    labels_3d = torch.tensor([0])
    scores_3d = torch.tensor([0.5])
    points = np.random.rand(100, 4)
    img_meta = dict(
        pts_filename=pcd, boxes_3d=box_3d, box_mode_3d=Box3DMode.LIDAR)
    data = dict(points=[[torch.tensor(points)]], img_metas=[[img_meta]])
    result = [
        dict(
            pts_bbox=dict(
                boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d))
    ]
68
69
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
70
    out_dir, file_name = show_result_meshlab(data, result, temp_out_dir)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    tmp_dir.cleanup()

    # test multi-modality show
    # Indoor scene
    pcd = 'tests/data/sunrgbd/points/000001.bin'
    filename = 'tests/data/sunrgbd/sunrgbd_trainval/image/000001.jpg'
    box_3d = DepthInstance3DBoxes(
        torch.tensor(
            [[-1.1580, 3.3041, -0.9961, 0.3829, 0.4647, 0.5574, 1.1213]]))
    img = np.random.randn(1, 3, 608, 832)
    K = np.array([[[529.5000, 0.0000, 365.0000], [0.0000, 529.5000, 265.0000],
                   [0.0000, 0.0000, 1.0000]]])
    Rt = torch.tensor([[[0.9980, 0.0058, -0.0634], [0.0058, 0.9835, 0.1808],
                        [0.0634, -0.1808, 0.9815]]])
    img_meta = dict(
        filename=filename,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        box_mode_3d=Box3DMode.DEPTH,
        box_type_3d=DepthInstance3DBoxes,
        pcd_trans=np.array([0., 0., 0.]),
        pcd_scale_factor=1.0,
        pts_filename=pcd,
        transformation_3d_flow=['R', 'S', 'T'])
    calib = dict(K=K, Rt=Rt)
    data = dict(
        points=[[torch.tensor(points)]],
        img_metas=[[img_meta]],
        img=[img],
        calib=[calib])
    result = [
        dict(
            pts_bbox=dict(
                boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d))
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
    out_dir, file_name = show_result_meshlab(data, result, temp_out_dir, 0.3)
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_png = file_name + '_img.png'
    expected_outfile_proj = file_name + '_pred.png'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    expected_outfile_png_path = os.path.join(out_dir, file_name,
                                             expected_outfile_png)
    expected_outfile_proj_path = os.path.join(out_dir, file_name,
                                              expected_outfile_proj)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    assert os.path.exists(expected_outfile_png_path)
    assert os.path.exists(expected_outfile_proj_path)
    tmp_dir.cleanup()
    # outdoor scene
    pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin'
    filename = 'tests/data/kitti/training/image_2/000000.png'
    box_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[6.4495, -3.9097, -1.7409, 1.5063, 3.1819, 1.4716, 1.8782]]))
    img = np.random.randn(1, 3, 384, 1280)
    lidar2img = np.array(
        [[6.09695435e+02, -7.21421631e+02, -1.25125790e+00, -1.23041824e+02],
         [1.80384201e+02, 7.64479828e+00, -7.19651550e+02, -1.01016693e+02],
         [9.99945343e-01, 1.24365499e-04, 1.04513029e-02, -2.69386917e-01],
         [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
    img_meta = dict(
        filename=filename,
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        box_mode_3d=Box3DMode.LIDAR,
        box_type_3d=LiDARInstance3DBoxes,
        pcd_trans=np.array([0., 0., 0.]),
        pcd_scale_factor=1.0,
        pts_filename=pcd,
        lidar2img=lidar2img)
    data = dict(
        points=[[torch.tensor(points)]], img_metas=[[img_meta]], img=[img])
    result = [
        dict(
            pts_bbox=dict(
                boxes_3d=box_3d, labels_3d=labels_3d, scores_3d=scores_3d))
    ]
    out_dir, file_name = show_result_meshlab(data, result, temp_out_dir, 0.1)
    tmp_dir = tempfile.TemporaryDirectory()
    temp_out_dir = tmp_dir.name
    out_dir, file_name = show_result_meshlab(data, result, temp_out_dir, 0.3)
    expected_outfile_pred = file_name + '_pred.obj'
    expected_outfile_pts = file_name + '_points.obj'
    expected_outfile_png = file_name + '_img.png'
    expected_outfile_proj = file_name + '_pred.png'
    expected_outfile_pred_path = os.path.join(out_dir, file_name,
                                              expected_outfile_pred)
    expected_outfile_pts_path = os.path.join(out_dir, file_name,
                                             expected_outfile_pts)
    expected_outfile_png_path = os.path.join(out_dir, file_name,
                                             expected_outfile_png)
    expected_outfile_proj_path = os.path.join(out_dir, file_name,
                                              expected_outfile_proj)
    assert os.path.exists(expected_outfile_pred_path)
    assert os.path.exists(expected_outfile_pts_path)
    assert os.path.exists(expected_outfile_png_path)
    assert os.path.exists(expected_outfile_proj_path)
    tmp_dir.cleanup()
184
185


yinchimaoliang's avatar
yinchimaoliang committed
186
187
188
189
190
191
def test_inference_detector():
    pcd = 'tests/data/kitti/training/velodyne_reduced/000000.bin'
    detector_cfg = 'configs/pointpillars/hv_pointpillars_secfpn_' \
                   '6x8_160e_kitti-3d-3class.py'
    detector = init_detector(detector_cfg, device='cpu')
    results = inference_detector(detector, pcd)
192
193
194
    bboxes_3d = results[0][0]['boxes_3d']
    scores_3d = results[0][0]['scores_3d']
    labels_3d = results[0][0]['labels_3d']
yinchimaoliang's avatar
yinchimaoliang committed
195
196
197
198
199
200
201
202
203
204
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


def test_single_gpu_test():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    cfg = _get_config_module('votenet/votenet_16x8_sunrgbd-3d-10class.py')
205
206
    cfg.model.train_cfg = None
    model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
yinchimaoliang's avatar
yinchimaoliang committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    dataset_cfg = cfg.data.test
    dataset_cfg.data_root = './tests/data/sunrgbd'
    dataset_cfg.ann_file = 'tests/data/sunrgbd/sunrgbd_infos.pkl'
    dataset = build_dataset(dataset_cfg)
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=False,
        shuffle=False)
    model = MMDataParallel(model, device_ids=[0])
    results = single_gpu_test(model, data_loader)
    bboxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert bboxes_3d.tensor.shape[0] >= 0
    assert bboxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0