sparse_unet.py 11.4 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
import torch
2
from mmcv.runner import BaseModule, auto_fp16
wuyuefeng's avatar
wuyuefeng committed
3

wuyuefeng's avatar
wuyuefeng committed
4
from mmdet3d.ops import SparseBasicBlock, make_sparse_convmodule
zhangwenwei's avatar
zhangwenwei committed
5
from mmdet3d.ops import spconv as spconv
6
from ..builder import MIDDLE_ENCODERS
wuyuefeng's avatar
wuyuefeng committed
7
8


9
@MIDDLE_ENCODERS.register_module()
10
class SparseUNet(BaseModule):
zhangwenwei's avatar
zhangwenwei committed
11
    r"""SparseUNet for PartA^2.
wuyuefeng's avatar
wuyuefeng committed
12

13
    See the `paper <https://arxiv.org/abs/1907.03670>`_ for more details.
wuyuefeng's avatar
wuyuefeng committed
14
15

    Args:
wangtai's avatar
wangtai committed
16
17
18
19
20
        in_channels (int): The number of input channels.
        sparse_shape (list[int]): The sparse shape of input tensor.
        norm_cfg (dict): Config of normalization layer.
        base_channels (int): Out channels for conv_input layer.
        output_channels (int): Out channels for conv_out layer.
wuyuefeng's avatar
wuyuefeng committed
21
        encoder_channels (tuple[tuple[int]]):
wangtai's avatar
wangtai committed
22
23
            Convolutional channels of each encode block.
        encoder_paddings (tuple[tuple[int]]): Paddings of each encode block.
wuyuefeng's avatar
wuyuefeng committed
24
        decoder_channels (tuple[tuple[int]]):
wangtai's avatar
wangtai committed
25
26
            Convolutional channels of each decode block.
        decoder_paddings (tuple[tuple[int]]): Paddings of each decode block.
wuyuefeng's avatar
wuyuefeng committed
27
    """
wuyuefeng's avatar
wuyuefeng committed
28
29
30

    def __init__(self,
                 in_channels,
wuyuefeng's avatar
wuyuefeng committed
31
32
                 sparse_shape,
                 order=('conv', 'norm', 'act'),
wuyuefeng's avatar
wuyuefeng committed
33
34
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 base_channels=16,
35
36
37
38
39
40
41
                 output_channels=128,
                 encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
                                                                        64)),
                 encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
                                                                 1)),
                 decoder_channels=((64, 64, 64), (64, 64, 32), (32, 32, 16),
                                   (16, 16, 16)),
42
43
44
                 decoder_paddings=((1, 0), (1, 0), (0, 0), (0, 1)),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
wuyuefeng's avatar
wuyuefeng committed
45
        self.sparse_shape = sparse_shape
wuyuefeng's avatar
wuyuefeng committed
46
        self.in_channels = in_channels
wuyuefeng's avatar
wuyuefeng committed
47
        self.order = order
wuyuefeng's avatar
wuyuefeng committed
48
        self.base_channels = base_channels
49
50
51
52
53
54
        self.output_channels = output_channels
        self.encoder_channels = encoder_channels
        self.encoder_paddings = encoder_paddings
        self.decoder_channels = decoder_channels
        self.decoder_paddings = decoder_paddings
        self.stage_num = len(self.encoder_channels)
55
        self.fp16_enabled = False
wuyuefeng's avatar
wuyuefeng committed
56
57
        # Spconv init all weight on its own

wuyuefeng's avatar
wuyuefeng committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        assert isinstance(order, tuple) and len(order) == 3
        assert set(order) == {'conv', 'norm', 'act'}

        if self.order[0] != 'conv':  # pre activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
                3,
                norm_cfg=norm_cfg,
                padding=1,
                indice_key='subm1',
                conv_type='SubMConv3d',
                order=('conv', ))
        else:  # post activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
                3,
                norm_cfg=norm_cfg,
                padding=1,
                indice_key='subm1',
                conv_type='SubMConv3d')
wuyuefeng's avatar
wuyuefeng committed
80

81
        encoder_out_channels = self.make_encoder_layers(
wuyuefeng's avatar
wuyuefeng committed
82
83
84
85
86
87
88
89
90
91
92
93
94
            make_sparse_convmodule, norm_cfg, self.base_channels)
        self.make_decoder_layers(make_sparse_convmodule, norm_cfg,
                                 encoder_out_channels)

        self.conv_out = make_sparse_convmodule(
            encoder_out_channels,
            self.output_channels,
            kernel_size=(3, 1, 1),
            stride=(2, 1, 1),
            norm_cfg=norm_cfg,
            padding=0,
            indice_key='spconv_down2',
            conv_type='SparseConv3d')
wuyuefeng's avatar
wuyuefeng committed
95

96
    @auto_fp16(apply_to=('voxel_features', ))
wuyuefeng's avatar
wuyuefeng committed
97
    def forward(self, voxel_features, coors, batch_size):
zhangwenwei's avatar
zhangwenwei committed
98
        """Forward of SparseUNet.
wuyuefeng's avatar
wuyuefeng committed
99
100

        Args:
zhangwenwei's avatar
zhangwenwei committed
101
102
103
104
            voxel_features (torch.float32): Voxel features in shape [N, C].
            coors (torch.int32): Coordinates in shape [N, 4],
                the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
            batch_size (int): Batch size.
wuyuefeng's avatar
wuyuefeng committed
105
106

        Returns:
zhangwenwei's avatar
zhangwenwei committed
107
            dict[str, torch.Tensor]: Backbone features.
wuyuefeng's avatar
wuyuefeng committed
108
109
110
111
112
113
114
        """
        coors = coors.int()
        input_sp_tensor = spconv.SparseConvTensor(voxel_features, coors,
                                                  self.sparse_shape,
                                                  batch_size)
        x = self.conv_input(input_sp_tensor)

wuyuefeng's avatar
wuyuefeng committed
115
        encode_features = []
wuyuefeng's avatar
wuyuefeng committed
116
117
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
wuyuefeng's avatar
wuyuefeng committed
118
            encode_features.append(x)
wuyuefeng's avatar
wuyuefeng committed
119
120
121

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
wuyuefeng's avatar
wuyuefeng committed
122
        out = self.conv_out(encode_features[-1])
wuyuefeng's avatar
wuyuefeng committed
123
124
125
126
127
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

wuyuefeng's avatar
wuyuefeng committed
128
        # for segmentation head, with output shape:
wuyuefeng's avatar
wuyuefeng committed
129
130
131
132
        # [400, 352, 11] <- [200, 176, 5]
        # [800, 704, 21] <- [400, 352, 11]
        # [1600, 1408, 41] <- [800, 704, 21]
        # [1600, 1408, 41] <- [1600, 1408, 41]
wuyuefeng's avatar
wuyuefeng committed
133
134
135
        decode_features = []
        x = encode_features[-1]
        for i in range(self.stage_num, 0, -1):
wuyuefeng's avatar
wuyuefeng committed
136
137
138
139
            x = self.decoder_layer_forward(encode_features[i - 1], x,
                                           getattr(self, f'lateral_layer{i}'),
                                           getattr(self, f'merge_layer{i}'),
                                           getattr(self, f'upsample_layer{i}'))
wuyuefeng's avatar
wuyuefeng committed
140
            decode_features.append(x)
wuyuefeng's avatar
wuyuefeng committed
141

wuyuefeng's avatar
wuyuefeng committed
142
        seg_features = decode_features[-1].features
wuyuefeng's avatar
wuyuefeng committed
143

wuyuefeng's avatar
wuyuefeng committed
144
145
        ret = dict(
            spatial_features=spatial_features, seg_features=seg_features)
wuyuefeng's avatar
wuyuefeng committed
146
147
148

        return ret

wuyuefeng's avatar
wuyuefeng committed
149
150
    def decoder_layer_forward(self, x_lateral, x_bottom, lateral_layer,
                              merge_layer, upsample_layer):
wuyuefeng's avatar
wuyuefeng committed
151
152
153
        """Forward of upsample and residual block.

        Args:
zhangwenwei's avatar
zhangwenwei committed
154
155
156
157
158
            x_lateral (:obj:`SparseConvTensor`): Lateral tensor.
            x_bottom (:obj:`SparseConvTensor`): Feature from bottom layer.
            lateral_layer (SparseBasicBlock): Convolution for lateral tensor.
            merge_layer (SparseSequential): Convolution for merging features.
            upsample_layer (SparseSequential): Convolution for upsampling.
wuyuefeng's avatar
wuyuefeng committed
159
160

        Returns:
zhangwenwei's avatar
zhangwenwei committed
161
            :obj:`SparseConvTensor`: Upsampled feature.
wuyuefeng's avatar
wuyuefeng committed
162
        """
wuyuefeng's avatar
wuyuefeng committed
163
164
165
166
167
        x = lateral_layer(x_lateral)
        x.features = torch.cat((x_bottom.features, x.features), dim=1)
        x_merge = merge_layer(x)
        x = self.reduce_channel(x, x_merge.features.shape[1])
        x.features = x_merge.features + x.features
wuyuefeng's avatar
wuyuefeng committed
168
        x = upsample_layer(x)
wuyuefeng's avatar
wuyuefeng committed
169
170
171
        return x

    @staticmethod
wuyuefeng's avatar
wuyuefeng committed
172
173
    def reduce_channel(x, out_channels):
        """reduce channel for element-wise addition.
wuyuefeng's avatar
wuyuefeng committed
174
175

        Args:
zhangwenwei's avatar
zhangwenwei committed
176
177
178
            x (:obj:`SparseConvTensor`): Sparse tensor, ``x.features``
                are in shape (N, C1).
            out_channels (int): The number of channel after reduction.
wuyuefeng's avatar
wuyuefeng committed
179
180

        Returns:
zhangwenwei's avatar
zhangwenwei committed
181
            :obj:`SparseConvTensor`: Channel reduced feature.
wuyuefeng's avatar
wuyuefeng committed
182
183
184
        """
        features = x.features
        n, in_channels = features.shape
wuyuefeng's avatar
wuyuefeng committed
185
186
        assert (in_channels % out_channels
                == 0) and (in_channels >= out_channels)
wuyuefeng's avatar
wuyuefeng committed
187
188
189
190

        x.features = features.view(n, out_channels, -1).sum(dim=2)
        return x

191
    def make_encoder_layers(self, make_block, norm_cfg, in_channels):
zhangwenwei's avatar
zhangwenwei committed
192
        """make encoder layers using sparse convs.
wuyuefeng's avatar
wuyuefeng committed
193
194

        Args:
zhangwenwei's avatar
zhangwenwei committed
195
196
197
            make_block (method): A bounded function to build blocks.
            norm_cfg (dict[str]): Config of normalization layer.
            in_channels (int): The number of encoder input channels.
wuyuefeng's avatar
wuyuefeng committed
198
199

        Returns:
wangtai's avatar
wangtai committed
200
            int: The number of encoder output channels.
wuyuefeng's avatar
wuyuefeng committed
201
        """
wuyuefeng's avatar
wuyuefeng committed
202
        self.encoder_layers = spconv.SparseSequential()
wuyuefeng's avatar
wuyuefeng committed
203

204
        for i, blocks in enumerate(self.encoder_channels):
wuyuefeng's avatar
wuyuefeng committed
205
206
            blocks_list = []
            for j, out_channels in enumerate(tuple(blocks)):
207
                padding = tuple(self.encoder_paddings[i])[j]
wuyuefeng's avatar
wuyuefeng committed
208
209
210
211
212
213
214
215
216
217
218
                # each stage started with a spconv layer
                # except the first stage
                if i != 0 and j == 0:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            stride=2,
                            padding=padding,
219
                            indice_key=f'spconv{i + 1}',
wuyuefeng's avatar
wuyuefeng committed
220
                            conv_type='SparseConv3d'))
wuyuefeng's avatar
wuyuefeng committed
221
222
223
224
225
226
227
228
                else:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            padding=padding,
wuyuefeng's avatar
wuyuefeng committed
229
230
                            indice_key=f'subm{i + 1}',
                            conv_type='SubMConv3d'))
wuyuefeng's avatar
wuyuefeng committed
231
                in_channels = out_channels
232
            stage_name = f'encoder_layer{i + 1}'
wuyuefeng's avatar
wuyuefeng committed
233
            stage_layers = spconv.SparseSequential(*blocks_list)
wuyuefeng's avatar
wuyuefeng committed
234
            self.encoder_layers.add_module(stage_name, stage_layers)
wuyuefeng's avatar
wuyuefeng committed
235
236
        return out_channels

237
    def make_decoder_layers(self, make_block, norm_cfg, in_channels):
zhangwenwei's avatar
zhangwenwei committed
238
        """make decoder layers using sparse convs.
wuyuefeng's avatar
wuyuefeng committed
239
240

        Args:
zhangwenwei's avatar
zhangwenwei committed
241
242
243
            make_block (method): A bounded function to build blocks.
            norm_cfg (dict[str]): Config of normalization layer.
            in_channels (int): The number of encoder input channels.
wuyuefeng's avatar
wuyuefeng committed
244
245

        Returns:
zhangwenwei's avatar
zhangwenwei committed
246
            int: The number of encoder output channels.
wuyuefeng's avatar
wuyuefeng committed
247
        """
248
249
250
        block_num = len(self.decoder_channels)
        for i, block_channels in enumerate(self.decoder_channels):
            paddings = self.decoder_paddings[i]
wuyuefeng's avatar
wuyuefeng committed
251
            setattr(
252
                self, f'lateral_layer{block_num - i}',
wuyuefeng's avatar
wuyuefeng committed
253
254
255
256
                SparseBasicBlock(
                    in_channels,
                    block_channels[0],
                    conv_cfg=dict(
257
                        type='SubMConv3d', indice_key=f'subm{block_num - i}'),
wuyuefeng's avatar
wuyuefeng committed
258
259
                    norm_cfg=norm_cfg))
            setattr(
260
                self, f'merge_layer{block_num - i}',
wuyuefeng's avatar
wuyuefeng committed
261
262
263
264
265
266
                make_block(
                    in_channels * 2,
                    block_channels[1],
                    3,
                    norm_cfg=norm_cfg,
                    padding=paddings[0],
wuyuefeng's avatar
wuyuefeng committed
267
268
                    indice_key=f'subm{block_num - i}',
                    conv_type='SubMConv3d'))
wuyuefeng's avatar
wuyuefeng committed
269
270
271
272
273
274
275
276
277
            if block_num - i != 1:
                setattr(
                    self, f'upsample_layer{block_num - i}',
                    make_block(
                        in_channels,
                        block_channels[2],
                        3,
                        norm_cfg=norm_cfg,
                        indice_key=f'spconv{block_num - i}',
wuyuefeng's avatar
wuyuefeng committed
278
                        conv_type='SparseInverseConv3d'))
wuyuefeng's avatar
wuyuefeng committed
279
280
            else:
                # use submanifold conv instead of inverse conv
wuyuefeng's avatar
wuyuefeng committed
281
                # in the last block
wuyuefeng's avatar
wuyuefeng committed
282
283
284
285
286
287
288
289
290
                setattr(
                    self, f'upsample_layer{block_num - i}',
                    make_block(
                        in_channels,
                        block_channels[2],
                        3,
                        norm_cfg=norm_cfg,
                        padding=paddings[1],
                        indice_key='subm1',
wuyuefeng's avatar
wuyuefeng committed
291
                        conv_type='SubMConv3d'))
wuyuefeng's avatar
wuyuefeng committed
292
            in_channels = block_channels[2]