sparse_unet.py 16 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
import torch
import torch.nn as nn

import mmdet3d.ops.spconv as spconv
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet3d.ops import SparseBasicBlock
wuyuefeng's avatar
wuyuefeng committed
6
7
8
9
10
from mmdet.ops import build_norm_layer
from ..registry import MIDDLE_ENCODERS


@MIDDLE_ENCODERS.register_module
wuyuefeng's avatar
wuyuefeng committed
11
class SparseUnet(nn.Module):
wuyuefeng's avatar
wuyuefeng committed
12
13
14
15

    def __init__(self,
                 in_channels,
                 output_shape,
wuyuefeng's avatar
wuyuefeng committed
16
                 pre_act=False,
wuyuefeng's avatar
wuyuefeng committed
17
18
19
20
21
22
23
24
25
26
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 base_channels=16,
                 out_conv_channels=128,
                 encode_conv_channels=((16, ), (32, 32, 32), (64, 64, 64),
                                       (64, 64, 64)),
                 encode_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
                                                                1)),
                 decode_conv_channels=((64, 64, 64), (64, 64, 32),
                                       (32, 32, 16), (16, 16, 16)),
                 decode_paddings=((1, 0), (1, 0), (0, 0), (0, 1))):
wuyuefeng's avatar
wuyuefeng committed
27
28
        """SparseUnet for PartA^2

wuyuefeng's avatar
wuyuefeng committed
29
30
        See https://arxiv.org/abs/1907.03670 for more detials.

wuyuefeng's avatar
wuyuefeng committed
31
32
33
34
35
        Args:
            in_channels (int): the number of input channels
            output_shape (list[int]): the shape of output tensor
            pre_act (bool): use pre_act_block or post_act_block
            norm_cfg (dict): normalize layer config
wuyuefeng's avatar
wuyuefeng committed
36
37
38
39
40
41
42
43
            base_channels (int): out channels for conv_input layer
            out_conv_channels (int): out channels for conv_out layer
            encode_conv_channels (tuple[tuple[int]]):
                conv channels of each encond block
            encode_paddings (tuple[tuple[int]]): paddings of each encode block
            decode_conv_channels (tuple[tuple[int]]):
                conv channels of each decode block
            decode_paddings (tuple[tuple[int]]): paddings of each decode block
wuyuefeng's avatar
wuyuefeng committed
44
45
46
47
48
49
        """
        super().__init__()
        self.sparse_shape = output_shape
        self.output_shape = output_shape
        self.in_channels = in_channels
        self.pre_act = pre_act
wuyuefeng's avatar
wuyuefeng committed
50
51
52
53
54
55
56
        self.base_channels = base_channels
        self.out_conv_channels = out_conv_channels
        self.encode_conv_channels = encode_conv_channels
        self.encode_paddings = encode_paddings
        self.decode_conv_channels = decode_conv_channels
        self.decode_paddings = decode_paddings
        self.stage_num = len(self.encode_conv_channels)
wuyuefeng's avatar
wuyuefeng committed
57
58
59
60
        # Spconv init all weight on its own
        # TODO: make the network could be modified

        if pre_act:
wuyuefeng's avatar
wuyuefeng committed
61
            # TODO: use ConvModule to encapsulate
wuyuefeng's avatar
wuyuefeng committed
62
63
64
            self.conv_input = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
wuyuefeng's avatar
wuyuefeng committed
65
                    self.base_channels,
wuyuefeng's avatar
wuyuefeng committed
66
67
68
69
                    3,
                    padding=1,
                    bias=False,
                    indice_key='subm1'), )
wuyuefeng's avatar
wuyuefeng committed
70
            make_block = self.pre_act_block
wuyuefeng's avatar
wuyuefeng committed
71
        else:
wuyuefeng's avatar
wuyuefeng committed
72
73
            norm_name, norm_layer = build_norm_layer(norm_cfg,
                                                     self.base_channels)
wuyuefeng's avatar
wuyuefeng committed
74
75
76
            self.conv_input = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
wuyuefeng's avatar
wuyuefeng committed
77
                    self.base_channels,
wuyuefeng's avatar
wuyuefeng committed
78
79
80
81
82
83
84
                    3,
                    padding=1,
                    bias=False,
                    indice_key='subm1'),
                norm_layer,
                nn.ReLU(),
            )
wuyuefeng's avatar
wuyuefeng committed
85
            make_block = self.post_act_block
wuyuefeng's avatar
wuyuefeng committed
86

wuyuefeng's avatar
wuyuefeng committed
87
88
89
        encoder_out_channels = self.make_encode_layers(make_block, norm_cfg,
                                                       self.base_channels)
        self.make_decode_layers(make_block, norm_cfg, encoder_out_channels)
wuyuefeng's avatar
wuyuefeng committed
90

wuyuefeng's avatar
wuyuefeng committed
91
92
        norm_name, norm_layer = build_norm_layer(norm_cfg,
                                                 self.out_conv_channels)
wuyuefeng's avatar
wuyuefeng committed
93
94
95
        self.conv_out = spconv.SparseSequential(
            # [200, 176, 5] -> [200, 176, 2]
            spconv.SparseConv3d(
wuyuefeng's avatar
wuyuefeng committed
96
97
                encoder_out_channels,
                self.out_conv_channels, (3, 1, 1),
wuyuefeng's avatar
wuyuefeng committed
98
99
100
101
102
103
104
105
106
                stride=(2, 1, 1),
                padding=0,
                bias=False,
                indice_key='spconv_down2'),
            norm_layer,
            nn.ReLU(),
        )

    def forward(self, voxel_features, coors, batch_size):
wuyuefeng's avatar
wuyuefeng committed
107
        """Forward of SparseUnet
wuyuefeng's avatar
wuyuefeng committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

        Args:
            voxel_features (torch.float32): shape [N, C]
            coors (torch.int32): shape [N, 4](batch_idx, z_idx, y_idx, x_idx)
            batch_size (int): batch size

        Returns:
            dict: backbone features
        """
        coors = coors.int()
        input_sp_tensor = spconv.SparseConvTensor(voxel_features, coors,
                                                  self.sparse_shape,
                                                  batch_size)
        x = self.conv_input(input_sp_tensor)

wuyuefeng's avatar
wuyuefeng committed
123
124
125
126
127
        encode_features = []
        for i, stage_name in enumerate(self.encoder):
            stage = getattr(self, stage_name)
            x = stage(x)
            encode_features.append(x)
wuyuefeng's avatar
wuyuefeng committed
128
129
130

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
wuyuefeng's avatar
wuyuefeng committed
131
        out = self.conv_out(encode_features[-1])
wuyuefeng's avatar
wuyuefeng committed
132
133
134
135
136
137
138
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

        ret = {'spatial_features': spatial_features}

wuyuefeng's avatar
wuyuefeng committed
139
        # for segmentation head, with output shape:
wuyuefeng's avatar
wuyuefeng committed
140
141
142
143
        # [400, 352, 11] <- [200, 176, 5]
        # [800, 704, 21] <- [400, 352, 11]
        # [1600, 1408, 41] <- [800, 704, 21]
        # [1600, 1408, 41] <- [1600, 1408, 41]
wuyuefeng's avatar
wuyuefeng committed
144
145
146
147
148
149
150
151
152
153
154
        decode_features = []
        x = encode_features[-1]
        for i in range(self.stage_num, 0, -1):
            x = self.UR_block_forward(
                encode_features[i - 1],
                x,
                getattr(self, 'conv_up_t{}'.format(i)),
                getattr(self, 'conv_up_m{}'.format(i)),
                getattr(self, 'inv_conv{}'.format(i)),
            )
            decode_features.append(x)
wuyuefeng's avatar
wuyuefeng committed
155

wuyuefeng's avatar
wuyuefeng committed
156
        seg_features = decode_features[-1].features
wuyuefeng's avatar
wuyuefeng committed
157

wuyuefeng's avatar
wuyuefeng committed
158
        ret.update({'seg_features': seg_features})
wuyuefeng's avatar
wuyuefeng committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        return ret

    def UR_block_forward(self, x_lateral, x_bottom, conv_t, conv_m, conv_inv):
        """Forward of upsample and residual block.

        Args:
            x_lateral (SparseConvTensor): lateral tensor
            x_bottom (SparseConvTensor): tensor from bottom layer
            conv_t (SparseBasicBlock): convolution for lateral tensor
            conv_m (SparseSequential): convolution for merging features
            conv_inv (SparseSequential): convolution for upsampling

        Returns:
            SparseConvTensor: upsampled feature
        """
        x_trans = conv_t(x_lateral)
        x = x_trans
        x.features = torch.cat((x_bottom.features, x_trans.features), dim=1)
        x_m = conv_m(x)
        x = self.channel_reduction(x, x_m.features.shape[1])
        x.features = x_m.features + x.features
        x = conv_inv(x)
        return x

    @staticmethod
    def channel_reduction(x, out_channels):
        """Channel reduction for element-wise add.

        Args:
            x (SparseConvTensor): x.features (N, C1)
            out_channels (int): the number of channel after reduction

        Returns:
            SparseConvTensor: channel reduced feature
        """
        features = x.features
        n, in_channels = features.shape
        assert (in_channels %
                out_channels == 0) and (in_channels >= out_channels)

        x.features = features.view(n, out_channels, -1).sum(dim=2)
        return x

    def pre_act_block(self,
                      in_channels,
                      out_channels,
                      kernel_size,
                      indice_key=None,
                      stride=1,
                      padding=0,
                      conv_type='subm',
                      norm_cfg=None):
        """Make pre activate sparse convolution block.

        Args:
            in_channels (int): the number of input channels
            out_channels (int): the number of out channels
            kernel_size (int): kernel size of convolution
            indice_key (str): the indice key used for sparse tensor
            stride (int): the stride of convolution
            padding (int or list[int]): the padding number of input
            conv_type (str): conv type in 'subm', 'spconv' or 'inverseconv'
            norm_cfg (dict): normal layer configs

        Returns:
            spconv.SparseSequential: pre activate sparse convolution block.
        """
wuyuefeng's avatar
wuyuefeng committed
227
        # TODO: use ConvModule to encapsulate
wuyuefeng's avatar
wuyuefeng committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        assert conv_type in ['subm', 'spconv', 'inverseconv']

        norm_name, norm_layer = build_norm_layer(norm_cfg, in_channels)
        if conv_type == 'subm':
            m = spconv.SparseSequential(
                norm_layer,
                nn.ReLU(inplace=True),
                spconv.SubMConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
            )
        elif conv_type == 'spconv':
            m = spconv.SparseSequential(
                norm_layer,
                nn.ReLU(inplace=True),
                spconv.SparseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
            )
        elif conv_type == 'inverseconv':
            m = spconv.SparseSequential(
                norm_layer,
                nn.ReLU(inplace=True),
                spconv.SparseInverseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    bias=False,
                    indice_key=indice_key),
            )
        else:
            raise NotImplementedError
        return m

    def post_act_block(self,
                       in_channels,
                       out_channels,
                       kernel_size,
                       indice_key,
                       stride=1,
                       padding=0,
                       conv_type='subm',
                       norm_cfg=None):
        """Make post activate sparse convolution block.

        Args:
            in_channels (int): the number of input channels
            out_channels (int): the number of out channels
            kernel_size (int): kernel size of convolution
            indice_key (str): the indice key used for sparse tensor
            stride (int): the stride of convolution
            padding (int or list[int]): the padding number of input
            conv_type (str): conv type in 'subm', 'spconv' or 'inverseconv'
            norm_cfg (dict[str]): normal layer configs

        Returns:
            spconv.SparseSequential: post activate sparse convolution block.
        """
wuyuefeng's avatar
wuyuefeng committed
295
        # TODO: use ConvModule to encapsulate
wuyuefeng's avatar
wuyuefeng committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        assert conv_type in ['subm', 'spconv', 'inverseconv']

        norm_name, norm_layer = build_norm_layer(norm_cfg, out_channels)
        if conv_type == 'subm':
            m = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    bias=False,
                    indice_key=indice_key),
                norm_layer,
                nn.ReLU(inplace=True),
            )
        elif conv_type == 'spconv':
            m = spconv.SparseSequential(
                spconv.SparseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
                norm_layer,
                nn.ReLU(inplace=True),
            )
        elif conv_type == 'inverseconv':
            m = spconv.SparseSequential(
                spconv.SparseInverseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    bias=False,
                    indice_key=indice_key),
                norm_layer,
                nn.ReLU(inplace=True),
            )
        else:
            raise NotImplementedError
        return m
wuyuefeng's avatar
wuyuefeng committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

    def make_encode_layers(self, make_block, norm_cfg, in_channels):
        """make encode layers using sparse convs

        Args:
            make_block (method): a bounded function to build blocks
            norm_cfg (dict[str]): normal layer configs
            in_channels (int): the number of encoder input channels

        Returns:
            int: the number of encoder output channels
        """
        self.encoder = []
        for i, blocks in enumerate(self.encode_conv_channels):
            blocks_list = []
            for j, out_channels in enumerate(tuple(blocks)):
                padding = tuple(self.encode_paddings[i])[j]
                # each stage started with a spconv layer
                # except the first stage
                if i != 0 and j == 0:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            stride=2,
                            padding=padding,
                            indice_key='spconv{}'.format(i + 1),
                            conv_type='spconv'))
                else:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            padding=padding,
                            indice_key='subm{}'.format(i + 1)))
                in_channels = out_channels
            stage_name = 'conv{}'.format(i + 1)
            stage_layers = spconv.SparseSequential(*blocks_list)
            self.add_module(stage_name, stage_layers)
            self.encoder.append(stage_name)
        return out_channels

    def make_decode_layers(self, make_block, norm_cfg, in_channels):
        """make decode layers using sparse convs

        Args:
            make_block (method): a bounded function to build blocks
            norm_cfg (dict[str]): normal layer configs
            in_channels (int): the number of encoder input channels

        Returns:
            int: the number of encoder output channels
        """
        block_num = len(self.decode_conv_channels)
        for i, block_channels in enumerate(self.decode_conv_channels):
            paddings = self.decode_paddings[i]
            setattr(
                self, 'conv_up_t{}'.format(block_num - i),
                SparseBasicBlock(
                    in_channels,
                    block_channels[0],
                    conv_cfg=dict(
                        type='SubMConv3d',
                        indice_key='subm{}'.format(block_num - i)),
                    norm_cfg=norm_cfg))
            setattr(
                self, 'conv_up_m{}'.format(block_num - i),
                make_block(
                    in_channels * 2,
                    block_channels[1],
                    3,
                    norm_cfg=norm_cfg,
                    padding=paddings[0],
                    indice_key='subm{}'.format(block_num - i)))
            setattr(
                self,
                'inv_conv{}'.format(block_num - i),
                make_block(
                    in_channels,
                    block_channels[2],
                    3,
                    norm_cfg=norm_cfg,
                    padding=paddings[1],
                    indice_key='spconv{}'.format(block_num - i)
                    if block_num - i != 1 else 'subm1',
                    conv_type='inverseconv' if block_num - i != 1 else
                    'subm')  # use submanifold conv instead of inverse conv
                # in the last block
            )
            in_channels = block_channels[2]