sparse_unet.py 15.7 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
import torch
import torch.nn as nn

import mmdet3d.ops.spconv as spconv
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet3d.ops import SparseBasicBlock
wuyuefeng's avatar
wuyuefeng committed
6
7
8
9
10
from mmdet.ops import build_norm_layer
from ..registry import MIDDLE_ENCODERS


@MIDDLE_ENCODERS.register_module
wuyuefeng's avatar
wuyuefeng committed
11
class SparseUnet(nn.Module):
wuyuefeng's avatar
wuyuefeng committed
12
13
14
15

    def __init__(self,
                 in_channels,
                 output_shape,
wuyuefeng's avatar
wuyuefeng committed
16
                 pre_act=False,
wuyuefeng's avatar
wuyuefeng committed
17
18
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 base_channels=16,
19
20
21
22
23
24
25
26
                 output_channels=128,
                 encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
                                                                        64)),
                 encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
                                                                 1)),
                 decoder_channels=((64, 64, 64), (64, 64, 32), (32, 32, 16),
                                   (16, 16, 16)),
                 decoder_paddings=((1, 0), (1, 0), (0, 0), (0, 1))):
wuyuefeng's avatar
wuyuefeng committed
27
28
        """SparseUnet for PartA^2

wuyuefeng's avatar
wuyuefeng committed
29
30
        See https://arxiv.org/abs/1907.03670 for more detials.

wuyuefeng's avatar
wuyuefeng committed
31
32
33
34
        Args:
            in_channels (int): the number of input channels
            output_shape (list[int]): the shape of output tensor
            pre_act (bool): use pre_act_block or post_act_block
35
            norm_cfg (dict): config of normalization layer
wuyuefeng's avatar
wuyuefeng committed
36
            base_channels (int): out channels for conv_input layer
37
38
39
40
41
            output_channels (int): out channels for conv_out layer
            encoder_channels (tuple[tuple[int]]):
                conv channels of each encode block
            encoder_paddings (tuple[tuple[int]]): paddings of each encode block
            decoder_channels (tuple[tuple[int]]):
wuyuefeng's avatar
wuyuefeng committed
42
                conv channels of each decode block
43
            decoder_paddings (tuple[tuple[int]]): paddings of each decode block
wuyuefeng's avatar
wuyuefeng committed
44
45
46
47
48
49
        """
        super().__init__()
        self.sparse_shape = output_shape
        self.output_shape = output_shape
        self.in_channels = in_channels
        self.pre_act = pre_act
wuyuefeng's avatar
wuyuefeng committed
50
        self.base_channels = base_channels
51
52
53
54
55
56
        self.output_channels = output_channels
        self.encoder_channels = encoder_channels
        self.encoder_paddings = encoder_paddings
        self.decoder_channels = decoder_channels
        self.decoder_paddings = decoder_paddings
        self.stage_num = len(self.encoder_channels)
wuyuefeng's avatar
wuyuefeng committed
57
58
59
        # Spconv init all weight on its own

        if pre_act:
wuyuefeng's avatar
wuyuefeng committed
60
            # TODO: use ConvModule to encapsulate
wuyuefeng's avatar
wuyuefeng committed
61
62
63
            self.conv_input = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
wuyuefeng's avatar
wuyuefeng committed
64
                    self.base_channels,
wuyuefeng's avatar
wuyuefeng committed
65
66
67
68
                    3,
                    padding=1,
                    bias=False,
                    indice_key='subm1'), )
wuyuefeng's avatar
wuyuefeng committed
69
            make_block = self.pre_act_block
wuyuefeng's avatar
wuyuefeng committed
70
71
72
73
        else:
            self.conv_input = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
wuyuefeng's avatar
wuyuefeng committed
74
                    self.base_channels,
wuyuefeng's avatar
wuyuefeng committed
75
76
77
78
                    3,
                    padding=1,
                    bias=False,
                    indice_key='subm1'),
79
                build_norm_layer(norm_cfg, self.base_channels)[1],
wuyuefeng's avatar
wuyuefeng committed
80
81
                nn.ReLU(),
            )
wuyuefeng's avatar
wuyuefeng committed
82
            make_block = self.post_act_block
wuyuefeng's avatar
wuyuefeng committed
83

84
85
86
        encoder_out_channels = self.make_encoder_layers(
            make_block, norm_cfg, self.base_channels)
        self.make_decoder_layers(make_block, norm_cfg, encoder_out_channels)
wuyuefeng's avatar
wuyuefeng committed
87
88
89
90

        self.conv_out = spconv.SparseSequential(
            # [200, 176, 5] -> [200, 176, 2]
            spconv.SparseConv3d(
wuyuefeng's avatar
wuyuefeng committed
91
                encoder_out_channels,
92
                self.output_channels, (3, 1, 1),
wuyuefeng's avatar
wuyuefeng committed
93
94
95
96
                stride=(2, 1, 1),
                padding=0,
                bias=False,
                indice_key='spconv_down2'),
97
            build_norm_layer(norm_cfg, self.output_channels)[1],
wuyuefeng's avatar
wuyuefeng committed
98
99
100
101
            nn.ReLU(),
        )

    def forward(self, voxel_features, coors, batch_size):
wuyuefeng's avatar
wuyuefeng committed
102
        """Forward of SparseUnet
wuyuefeng's avatar
wuyuefeng committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

        Args:
            voxel_features (torch.float32): shape [N, C]
            coors (torch.int32): shape [N, 4](batch_idx, z_idx, y_idx, x_idx)
            batch_size (int): batch size

        Returns:
            dict: backbone features
        """
        coors = coors.int()
        input_sp_tensor = spconv.SparseConvTensor(voxel_features, coors,
                                                  self.sparse_shape,
                                                  batch_size)
        x = self.conv_input(input_sp_tensor)

wuyuefeng's avatar
wuyuefeng committed
118
119
120
121
122
        encode_features = []
        for i, stage_name in enumerate(self.encoder):
            stage = getattr(self, stage_name)
            x = stage(x)
            encode_features.append(x)
wuyuefeng's avatar
wuyuefeng committed
123
124
125

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
wuyuefeng's avatar
wuyuefeng committed
126
        out = self.conv_out(encode_features[-1])
wuyuefeng's avatar
wuyuefeng committed
127
128
129
130
131
132
133
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

        ret = {'spatial_features': spatial_features}

wuyuefeng's avatar
wuyuefeng committed
134
        # for segmentation head, with output shape:
wuyuefeng's avatar
wuyuefeng committed
135
136
137
138
        # [400, 352, 11] <- [200, 176, 5]
        # [800, 704, 21] <- [400, 352, 11]
        # [1600, 1408, 41] <- [800, 704, 21]
        # [1600, 1408, 41] <- [1600, 1408, 41]
wuyuefeng's avatar
wuyuefeng committed
139
140
141
        decode_features = []
        x = encode_features[-1]
        for i in range(self.stage_num, 0, -1):
142
            x = self.decoder_layer_forward(
wuyuefeng's avatar
wuyuefeng committed
143
144
                encode_features[i - 1],
                x,
145
146
147
                getattr(self, f'lateral_layer{i}'),
                getattr(self, f'merge_layer{i}'),
                getattr(self, f'upsample_layer{i}'),
wuyuefeng's avatar
wuyuefeng committed
148
149
            )
            decode_features.append(x)
wuyuefeng's avatar
wuyuefeng committed
150

wuyuefeng's avatar
wuyuefeng committed
151
        seg_features = decode_features[-1].features
wuyuefeng's avatar
wuyuefeng committed
152

wuyuefeng's avatar
wuyuefeng committed
153
        ret.update({'seg_features': seg_features})
wuyuefeng's avatar
wuyuefeng committed
154
155
156

        return ret

157
158
    def decoder_layer_forward(self, x_lateral, x_bottom, conv_t, conv_m,
                              conv_inv):
wuyuefeng's avatar
wuyuefeng committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        """Forward of upsample and residual block.

        Args:
            x_lateral (SparseConvTensor): lateral tensor
            x_bottom (SparseConvTensor): tensor from bottom layer
            conv_t (SparseBasicBlock): convolution for lateral tensor
            conv_m (SparseSequential): convolution for merging features
            conv_inv (SparseSequential): convolution for upsampling

        Returns:
            SparseConvTensor: upsampled feature
        """
        x_trans = conv_t(x_lateral)
        x = x_trans
        x.features = torch.cat((x_bottom.features, x_trans.features), dim=1)
        x_m = conv_m(x)
        x = self.channel_reduction(x, x_m.features.shape[1])
        x.features = x_m.features + x.features
        x = conv_inv(x)
        return x

    @staticmethod
    def channel_reduction(x, out_channels):
182
        """Channel reduction for element-wise addition.
wuyuefeng's avatar
wuyuefeng committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

        Args:
            x (SparseConvTensor): x.features (N, C1)
            out_channels (int): the number of channel after reduction

        Returns:
            SparseConvTensor: channel reduced feature
        """
        features = x.features
        n, in_channels = features.shape
        assert (in_channels %
                out_channels == 0) and (in_channels >= out_channels)

        x.features = features.view(n, out_channels, -1).sum(dim=2)
        return x

    def pre_act_block(self,
                      in_channels,
                      out_channels,
                      kernel_size,
                      indice_key=None,
                      stride=1,
                      padding=0,
                      conv_type='subm',
                      norm_cfg=None):
        """Make pre activate sparse convolution block.

        Args:
            in_channels (int): the number of input channels
            out_channels (int): the number of out channels
            kernel_size (int): kernel size of convolution
            indice_key (str): the indice key used for sparse tensor
            stride (int): the stride of convolution
            padding (int or list[int]): the padding number of input
            conv_type (str): conv type in 'subm', 'spconv' or 'inverseconv'
218
            norm_cfg (dict): config of normalization layer
wuyuefeng's avatar
wuyuefeng committed
219
220
221
222

        Returns:
            spconv.SparseSequential: pre activate sparse convolution block.
        """
wuyuefeng's avatar
wuyuefeng committed
223
        # TODO: use ConvModule to encapsulate
wuyuefeng's avatar
wuyuefeng committed
224
225
226
227
        assert conv_type in ['subm', 'spconv', 'inverseconv']

        if conv_type == 'subm':
            m = spconv.SparseSequential(
228
                build_norm_layer(norm_cfg, in_channels)[1],
wuyuefeng's avatar
wuyuefeng committed
229
230
231
232
233
234
235
236
237
238
239
                nn.ReLU(inplace=True),
                spconv.SubMConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
            )
        elif conv_type == 'spconv':
            m = spconv.SparseSequential(
240
                build_norm_layer(norm_cfg, in_channels)[1],
wuyuefeng's avatar
wuyuefeng committed
241
242
243
244
245
246
247
248
249
250
251
252
                nn.ReLU(inplace=True),
                spconv.SparseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
            )
        elif conv_type == 'inverseconv':
            m = spconv.SparseSequential(
253
                build_norm_layer(norm_cfg, in_channels)[1],
wuyuefeng's avatar
wuyuefeng committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                nn.ReLU(inplace=True),
                spconv.SparseInverseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    bias=False,
                    indice_key=indice_key),
            )
        else:
            raise NotImplementedError
        return m

    def post_act_block(self,
                       in_channels,
                       out_channels,
                       kernel_size,
                       indice_key,
                       stride=1,
                       padding=0,
                       conv_type='subm',
                       norm_cfg=None):
        """Make post activate sparse convolution block.

        Args:
            in_channels (int): the number of input channels
            out_channels (int): the number of out channels
            kernel_size (int): kernel size of convolution
            indice_key (str): the indice key used for sparse tensor
            stride (int): the stride of convolution
            padding (int or list[int]): the padding number of input
            conv_type (str): conv type in 'subm', 'spconv' or 'inverseconv'
285
            norm_cfg (dict[str]): config of normalization layer
wuyuefeng's avatar
wuyuefeng committed
286
287
288
289

        Returns:
            spconv.SparseSequential: post activate sparse convolution block.
        """
wuyuefeng's avatar
wuyuefeng committed
290
        # TODO: use ConvModule to encapsulate
wuyuefeng's avatar
wuyuefeng committed
291
292
293
294
295
296
297
298
299
300
        assert conv_type in ['subm', 'spconv', 'inverseconv']

        if conv_type == 'subm':
            m = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    bias=False,
                    indice_key=indice_key),
301
                build_norm_layer(norm_cfg, out_channels)[1],
wuyuefeng's avatar
wuyuefeng committed
302
303
304
305
306
307
308
309
310
311
312
313
                nn.ReLU(inplace=True),
            )
        elif conv_type == 'spconv':
            m = spconv.SparseSequential(
                spconv.SparseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
314
                build_norm_layer(norm_cfg, out_channels)[1],
wuyuefeng's avatar
wuyuefeng committed
315
316
317
318
319
320
321
322
323
324
                nn.ReLU(inplace=True),
            )
        elif conv_type == 'inverseconv':
            m = spconv.SparseSequential(
                spconv.SparseInverseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    bias=False,
                    indice_key=indice_key),
325
                build_norm_layer(norm_cfg, out_channels)[1],
wuyuefeng's avatar
wuyuefeng committed
326
327
328
329
330
                nn.ReLU(inplace=True),
            )
        else:
            raise NotImplementedError
        return m
wuyuefeng's avatar
wuyuefeng committed
331

332
333
    def make_encoder_layers(self, make_block, norm_cfg, in_channels):
        """make encoder layers using sparse convs
wuyuefeng's avatar
wuyuefeng committed
334
335
336

        Args:
            make_block (method): a bounded function to build blocks
337
            norm_cfg (dict[str]): config of normalization layer
wuyuefeng's avatar
wuyuefeng committed
338
339
340
341
342
343
            in_channels (int): the number of encoder input channels

        Returns:
            int: the number of encoder output channels
        """
        self.encoder = []
344
        for i, blocks in enumerate(self.encoder_channels):
wuyuefeng's avatar
wuyuefeng committed
345
346
            blocks_list = []
            for j, out_channels in enumerate(tuple(blocks)):
347
                padding = tuple(self.encoder_paddings[i])[j]
wuyuefeng's avatar
wuyuefeng committed
348
349
350
351
352
353
354
355
356
357
358
                # each stage started with a spconv layer
                # except the first stage
                if i != 0 and j == 0:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            stride=2,
                            padding=padding,
359
                            indice_key=f'spconv{i + 1}',
wuyuefeng's avatar
wuyuefeng committed
360
361
362
363
364
365
366
367
368
                            conv_type='spconv'))
                else:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            padding=padding,
369
                            indice_key=f'subm{i + 1}'))
wuyuefeng's avatar
wuyuefeng committed
370
                in_channels = out_channels
371
            stage_name = f'encoder_layer{i + 1}'
wuyuefeng's avatar
wuyuefeng committed
372
373
374
375
376
            stage_layers = spconv.SparseSequential(*blocks_list)
            self.add_module(stage_name, stage_layers)
            self.encoder.append(stage_name)
        return out_channels

377
378
    def make_decoder_layers(self, make_block, norm_cfg, in_channels):
        """make decoder layers using sparse convs
wuyuefeng's avatar
wuyuefeng committed
379
380
381

        Args:
            make_block (method): a bounded function to build blocks
382
            norm_cfg (dict[str]): config of normalization layer
wuyuefeng's avatar
wuyuefeng committed
383
384
385
386
387
            in_channels (int): the number of encoder input channels

        Returns:
            int: the number of encoder output channels
        """
388
389
390
        block_num = len(self.decoder_channels)
        for i, block_channels in enumerate(self.decoder_channels):
            paddings = self.decoder_paddings[i]
wuyuefeng's avatar
wuyuefeng committed
391
            setattr(
392
                self, f'lateral_layer{block_num - i}',
wuyuefeng's avatar
wuyuefeng committed
393
394
395
396
                SparseBasicBlock(
                    in_channels,
                    block_channels[0],
                    conv_cfg=dict(
397
                        type='SubMConv3d', indice_key=f'subm{block_num - i}'),
wuyuefeng's avatar
wuyuefeng committed
398
399
                    norm_cfg=norm_cfg))
            setattr(
400
                self, f'merge_layer{block_num - i}',
wuyuefeng's avatar
wuyuefeng committed
401
402
403
404
405
406
                make_block(
                    in_channels * 2,
                    block_channels[1],
                    3,
                    norm_cfg=norm_cfg,
                    padding=paddings[0],
407
                    indice_key=f'subm{block_num - i}'))
wuyuefeng's avatar
wuyuefeng committed
408
409
            setattr(
                self,
410
                f'upsample_layer{block_num - i}',
wuyuefeng's avatar
wuyuefeng committed
411
412
413
414
415
416
                make_block(
                    in_channels,
                    block_channels[2],
                    3,
                    norm_cfg=norm_cfg,
                    padding=paddings[1],
417
                    indice_key=f'spconv{block_num - i}'
wuyuefeng's avatar
wuyuefeng committed
418
419
420
421
422
423
                    if block_num - i != 1 else 'subm1',
                    conv_type='inverseconv' if block_num - i != 1 else
                    'subm')  # use submanifold conv instead of inverse conv
                # in the last block
            )
            in_channels = block_channels[2]