test_photometric.py 9.35 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright (c) Open-MMLab. All rights reserved.
import os.path as osp

import cv2
import numpy as np
from numpy.testing import assert_array_equal

import mmcv


class TestPhotometric:

    @classmethod
    def setup_class(cls):
        # the test img resolution is 400x300
        cls.img_path = osp.join(osp.dirname(__file__), '../data/color.jpg')
        cls.img = cv2.imread(cls.img_path)
        cls.mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
        cls.std = np.array([58.395, 57.12, 57.375], dtype=np.float32)

    def test_imnormalize(self):
        rgb_img = self.img[:, :, ::-1]
        baseline = (rgb_img - self.mean) / self.std
        img = mmcv.imnormalize(self.img, self.mean, self.std)
        assert np.allclose(img, baseline)
        assert id(img) != id(self.img)
        img = mmcv.imnormalize(rgb_img, self.mean, self.std, to_rgb=False)
        assert np.allclose(img, baseline)
        assert id(img) != id(rgb_img)

    def test_imnormalize_(self):
        img_for_normalize = np.float32(self.img)
        rgb_img_for_normalize = np.float32(self.img[:, :, ::-1])
        baseline = (rgb_img_for_normalize - self.mean) / self.std
        img = mmcv.imnormalize_(img_for_normalize, self.mean, self.std)
        assert np.allclose(img_for_normalize, baseline)
        assert id(img) == id(img_for_normalize)
        img = mmcv.imnormalize_(
            rgb_img_for_normalize, self.mean, self.std, to_rgb=False)
        assert np.allclose(img, baseline)
        assert id(img) == id(rgb_img_for_normalize)

    def test_imdenormalize(self):
        norm_img = (self.img[:, :, ::-1] - self.mean) / self.std
        rgb_baseline = (norm_img * self.std + self.mean)
        bgr_baseline = rgb_baseline[:, :, ::-1]
        img = mmcv.imdenormalize(norm_img, self.mean, self.std)
        assert np.allclose(img, bgr_baseline)
        img = mmcv.imdenormalize(norm_img, self.mean, self.std, to_bgr=False)
        assert np.allclose(img, rgb_baseline)

    def test_iminvert(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[255, 127, 0], [254, 128, 1], [253, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.iminvert(img), img_r)

    def test_solarize(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[0, 127, 0], [1, 127, 1], [2, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.solarize(img), img_r)
        img_r = np.array([[0, 127, 0], [1, 128, 1], [2, 126, 2]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.solarize(img, 100), img_r)

    def test_posterize(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img_r = np.array([[0, 128, 128], [0, 0, 128], [0, 128, 128]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.posterize(img, 1), img_r)
        img_r = np.array([[0, 128, 224], [0, 96, 224], [0, 128, 224]],
                         dtype=np.uint8)
        assert_array_equal(mmcv.posterize(img, 3), img_r)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    def test_adjust_color(self):
        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img = np.stack([img, img, img], axis=-1)
        assert_array_equal(mmcv.adjust_color(img), img)
        img_gray = mmcv.bgr2gray(img)
        img_r = np.stack([img_gray, img_gray, img_gray], axis=-1)
        assert_array_equal(mmcv.adjust_color(img, 0), img_r)
        assert_array_equal(mmcv.adjust_color(img, 0, 1), img_r)
        assert_array_equal(
            mmcv.adjust_color(img, 0.5, 0.5),
            np.round(np.clip((img * 0.5 + img_r * 0.5), 0,
                             255)).astype(img.dtype))
        assert_array_equal(
            mmcv.adjust_color(img, 1, 1.5),
            np.round(np.clip(img * 1 + img_r * 1.5, 0, 255)).astype(img.dtype))
        assert_array_equal(
            mmcv.adjust_color(img, 0.8, -0.6, gamma=2),
            np.round(np.clip(img * 0.8 - 0.6 * img_r + 2, 0,
                             255)).astype(img.dtype))
        assert_array_equal(
            mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6),
            np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0,
                             255)).astype(img.dtype))

        # test float type of image
        img = img.astype(np.float32)
        assert_array_equal(
            np.round(mmcv.adjust_color(img, 0.8, -0.6, gamma=-0.6)),
            np.round(np.clip(img * 0.8 - 0.6 * img_r - 0.6, 0, 255)))
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    def test_imequalize(self, nb_rand_test=100):

        def _imequalize(img):
            # equalize the image using PIL.ImageOps.equalize
            from PIL import ImageOps, Image
            img = Image.fromarray(img)
            equalized_img = np.asarray(ImageOps.equalize(img))
            return equalized_img

        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img = np.stack([img, img, img], axis=-1)
        equalized_img = mmcv.imequalize(img)
        assert_array_equal(equalized_img, _imequalize(img))

        # test equalize with case step=0
        img = np.array([[0, 0, 0], [120, 120, 120], [255, 255, 255]],
                       dtype=np.uint8)
        img = np.stack([img, img, img], axis=-1)
        assert_array_equal(mmcv.imequalize(img), img)

        # test equalize with randomly sampled image.
        for _ in range(nb_rand_test):
            img = np.clip(
                np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
                255).astype(np.uint8)
            equalized_img = mmcv.imequalize(img)
            assert_array_equal(equalized_img, _imequalize(img))
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

    def test_adjust_brightness(self, nb_rand_test=100):

        def _adjust_brightness(img, factor):
            # adjust the brightness of image using
            # PIL.ImageEnhance.Brightness
            from PIL.ImageEnhance import Brightness
            from PIL import Image
            img = Image.fromarray(img)
            brightened_img = Brightness(img).enhance(factor)
            return np.asarray(brightened_img)

        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img = np.stack([img, img, img], axis=-1)
        # test case with factor 1.0
        assert_array_equal(mmcv.adjust_brightness(img, 1.), img)
        # test case with factor 0.0
        assert_array_equal(mmcv.adjust_brightness(img, 0.), np.zeros_like(img))
        # test adjust_brightness with randomly sampled images and factors.
        for _ in range(nb_rand_test):
            img = np.clip(
                np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
                255).astype(np.uint8)
            factor = np.random.uniform()
            np.testing.assert_allclose(
                mmcv.adjust_brightness(img, factor).astype(np.int32),
                _adjust_brightness(img, factor).astype(np.int32),
                rtol=0,
                atol=1)

    def test_adjust_contrast(self, nb_rand_test=100):

        def _adjust_contrast(img, factor):
            from PIL.ImageEnhance import Contrast
            from PIL import Image
            # Image.fromarray defaultly supports RGB, not BGR.
            # convert from BGR to RGB
            img = Image.fromarray(img[..., ::-1], mode='RGB')
            contrasted_img = Contrast(img).enhance(factor)
            # convert from RGB to BGR
            return np.asarray(contrasted_img)[..., ::-1]

        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img = np.stack([img, img, img], axis=-1)
        # test case with factor 1.0
        assert_array_equal(mmcv.adjust_contrast(img, 1.), img)
        # test case with factor 0.0
        assert_array_equal(
            mmcv.adjust_contrast(img, 0.), _adjust_contrast(img, 0.))
        # test adjust_contrast with randomly sampled images and factors.
        for _ in range(nb_rand_test):
            img = np.clip(
                np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0,
                255).astype(np.uint8)
            factor = np.random.uniform()
            # Note the gap (less_equal 1) between PIL.ImageEnhance.Contrast
            # and mmcv.adjust_contrast comes from the gap that converts from
            # a color image to gray image using mmcv or PIL.
            np.testing.assert_allclose(
                mmcv.adjust_contrast(img, factor).astype(np.int32),
                _adjust_contrast(img, factor).astype(np.int32),
                rtol=0,
                atol=1)
yamengxi's avatar
yamengxi committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def test_lut_transform(self):
        lut_table = np.array(list(range(256)))

        img = mmcv.lut_transform(self.img, lut_table)
        baseline = cv2.LUT(self.img, lut_table)
        assert np.allclose(img, baseline)

        input_img = np.array(
            [[[0, 128, 255], [255, 128, 0]], [[0, 128, 255], [255, 128, 0]]],
            dtype=np.float)
        img = mmcv.lut_transform(input_img, lut_table)
        baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table)
        assert np.allclose(img, baseline)

        input_img = np.random.randint(0, 256, size=(7, 8, 9, 10, 11))
        img = mmcv.lut_transform(input_img, lut_table)
        baseline = cv2.LUT(np.array(input_img, dtype=np.uint8), lut_table)
        assert np.allclose(img, baseline)