Unverified Commit a0cc5a84 authored by Qiaofei Li's avatar Qiaofei Li Committed by GitHub
Browse files

Supports brightness and contrast augmentations (#546)

* add brightness and contrast augmentation

* remove unnecessary

* reformat

* relax the precision constrain for adjust_brightness aug

* fix percision assertion error in unit test

* remove toy

* rename alpha as factor

* use np.testing.assert_allclose in place of np.less_equal
parent c937d395
......@@ -7,8 +7,9 @@ from .geometric import (imcrop, imflip, imflip_, impad, impad_to_multiple,
imtranslate, rescale_size)
from .io import imfrombytes, imread, imwrite, supported_backends, use_backend
from .misc import tensor2imgs
from .photometric import (adjust_color, imdenormalize, imequalize, iminvert,
imnormalize, imnormalize_, posterize, solarize)
from .photometric import (adjust_brightness, adjust_color, adjust_contrast,
imdenormalize, imequalize, iminvert, imnormalize,
imnormalize_, posterize, solarize)
__all__ = [
'bgr2gray', 'bgr2hls', 'bgr2hsv', 'bgr2rgb', 'gray2bgr', 'gray2rgb',
......@@ -18,5 +19,6 @@ __all__ = [
'imwrite', 'supported_backends', 'use_backend', 'imdenormalize',
'imnormalize', 'imnormalize_', 'iminvert', 'posterize', 'solarize',
'rgb2ycbcr', 'bgr2ycbcr', 'ycbcr2rgb', 'ycbcr2bgr', 'tensor2imgs',
'imshear', 'imtranslate', 'adjust_color', 'imequalize'
'imshear', 'imtranslate', 'adjust_color', 'imequalize',
'adjust_brightness', 'adjust_contrast'
]
import cv2
import numpy as np
from .colorspace import bgr2gray
from .colorspace import bgr2gray, gray2bgr
def imnormalize(img, mean, std, to_rgb=True):
......@@ -166,3 +166,61 @@ def imequalize(img):
s3 = _scale_channel(img, 2)
equalized_img = np.stack([s1, s2, s3], axis=-1)
return equalized_img
def adjust_brightness(img, factor=1.):
"""Adjust image brightness.
This function controls the brightness of an image. An
enhancement factor of 0.0 gives a black image.
A factor of 1.0 gives the original image. This function
blends the source image and the degenerated black image:
``output = img * factor + degenerated * (1 - factor)``
Args:
img (ndarray): Image to be brightened.
factor (float): A value controls the enhancement.
Factor 1.0 returns the original image, lower
factors mean less color (brightness, contrast,
etc), and higher values more. Default 1.
Returns:
ndarray: The brightened image.
"""
degenerated = np.zeros_like(img)
# Note manually convert the dtype to np.float32, to
# achieve as close results as PIL.ImageEnhance.Brightness.
# Set beta=1-factor, and gamma=0
brightened_img = cv2.addWeighted(
img.astype(np.float32), factor, degenerated.astype(np.float32),
1 - factor, 0)
return brightened_img.astype(img.dtype)
def adjust_contrast(img, factor=1.):
"""Adjust image contrast.
This function controls the contrast of an image. An
enhancement factor of 0.0 gives a solid grey
image. A factor of 1.0 gives the original image. It
blends the source image and the degenerated mean image:
``output = img * factor + degenerated * (1 - factor)``
Args:
img (ndarray): Image to be contrasted. BGR order.
factor (float): Same as :func:`mmcv.adjust_brightness`.
Returns:
ndarray: The contrasted image.
"""
gray_img = bgr2gray(img)
hist = np.histogram(gray_img, 256, (0, 255))[0]
mean = round(np.sum(gray_img) / np.sum(hist))
degenerated = (np.ones_like(img[..., 0]) * mean).astype(img.dtype)
degenerated = gray2bgr(degenerated)
contrasted_img = cv2.addWeighted(
img.astype(np.float32), factor, degenerated.astype(np.float32),
1 - factor, 0)
return contrasted_img.astype(img.dtype)
......@@ -135,3 +135,68 @@ class TestPhotometric:
255).astype(np.uint8)
equalized_img = mmcv.imequalize(img)
assert_array_equal(equalized_img, _imequalize(img))
def test_adjust_brightness(self, nb_rand_test=100):
def _adjust_brightness(img, factor):
# adjust the brightness of image using
# PIL.ImageEnhance.Brightness
from PIL.ImageEnhance import Brightness
from PIL import Image
img = Image.fromarray(img)
brightened_img = Brightness(img).enhance(factor)
return np.asarray(brightened_img)
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
# test case with factor 1.0
assert_array_equal(mmcv.adjust_brightness(img, 1.), img)
# test case with factor 0.0
assert_array_equal(mmcv.adjust_brightness(img, 0.), np.zeros_like(img))
# test adjust_brightness with randomly sampled images and factors.
for _ in range(nb_rand_test):
img = np.clip(
np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
255).astype(np.uint8)
factor = np.random.uniform()
np.testing.assert_allclose(
mmcv.adjust_brightness(img, factor).astype(np.int32),
_adjust_brightness(img, factor).astype(np.int32),
rtol=0,
atol=1)
def test_adjust_contrast(self, nb_rand_test=100):
def _adjust_contrast(img, factor):
from PIL.ImageEnhance import Contrast
from PIL import Image
# Image.fromarray defaultly supports RGB, not BGR.
# convert from BGR to RGB
img = Image.fromarray(img[..., ::-1], mode='RGB')
contrasted_img = Contrast(img).enhance(factor)
# convert from RGB to BGR
return np.asarray(contrasted_img)[..., ::-1]
img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
dtype=np.uint8)
img = np.stack([img, img, img], axis=-1)
# test case with factor 1.0
assert_array_equal(mmcv.adjust_contrast(img, 1.), img)
# test case with factor 0.0
assert_array_equal(
mmcv.adjust_contrast(img, 0.), _adjust_contrast(img, 0.))
# test adjust_contrast with randomly sampled images and factors.
for _ in range(nb_rand_test):
img = np.clip(
np.random.uniform(0, 1, (1200, 1000, 3)) * 260, 0,
255).astype(np.uint8)
factor = np.random.uniform()
# Note the gap (less_equal 1) between PIL.ImageEnhance.Contrast
# and mmcv.adjust_contrast comes from the gap that converts from
# a color image to gray image using mmcv or PIL.
np.testing.assert_allclose(
mmcv.adjust_contrast(img, factor).astype(np.int32),
_adjust_contrast(img, factor).astype(np.int32),
rtol=0,
atol=1)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment