test_hooks.py 22 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3

CommandLine:
4
    pytest tests/test_runner/test_hooks.py
Wenwei Zhang's avatar
Wenwei Zhang committed
5
6
    xdoctest tests/test_hooks.py zero
"""
7
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
8
import os.path as osp
9
import re
10
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
11
import sys
12
import tempfile
Wenwei Zhang's avatar
Wenwei Zhang committed
13
from unittest.mock import MagicMock, call
Jiangmiao Pang's avatar
Jiangmiao Pang committed
14

15
16
17
import pytest
import torch
import torch.nn as nn
shilong's avatar
shilong committed
18
from torch.nn.init import constant_
19
20
from torch.utils.data import DataLoader

21
22
23
from mmcv.runner import (CheckpointHook, EMAHook, IterTimerHook,
                         MlflowLoggerHook, PaviLoggerHook, WandbLoggerHook,
                         build_runner)
24
25
from mmcv.runner.hooks.lr_updater import (CosineRestartLrUpdaterHook,
                                          OneCycleLrUpdaterHook)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
26
27


28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def test_checkpoint_hook():
    """xdoctest -m tests/test_runner/test_hooks.py test_checkpoint_hook."""

    # test epoch based runner
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=1)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'epoch_1.pth')
    shutil.rmtree(runner.work_dir)

    # test iter based runner
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=1, max_epochs=None)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=False)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'iter_1.pth')
    shutil.rmtree(runner.work_dir)


shilong's avatar
shilong committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def test_ema_hook():
    """xdoctest -m tests/test_hooks.py test_ema_hook."""

    class DemoModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=1,
                padding=1,
                bias=True)
            self._init_weight()

        def _init_weight(self):
            constant_(self.conv.weight, 0)
            constant_(self.conv.bias, 0)

        def forward(self, x):
            return self.conv(x).sum()

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    runner = _build_demo_runner()
    demo_model = DemoModel()
    runner.model = demo_model
    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(emahook, priority='HIGHEST')
    runner.register_hook(checkpointhook)
90
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 0
            value.fill_(1)
        else:
            assert value.sum() == 0
    assert contain_ema_buffer
    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    work_dir = runner.work_dir
    resume_ema_hook = EMAHook(
        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
105
    runner = _build_demo_runner(max_epochs=2)
shilong's avatar
shilong committed
106
107
108
109
    runner.model = demo_model
    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
110
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
111
112
113
114
115
116
117
118
119
120
121
122
123
    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 2
        else:
            assert value.sum() == 1
    assert contain_ema_buffer
    shutil.rmtree(runner.work_dir)
    shutil.rmtree(work_dir)


Jiangmiao Pang's avatar
Jiangmiao Pang committed
124
125
126
def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
127
128
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
129
    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
130
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
131
    runner.register_hook(hook)
132
    runner.run([loader, loader], [('train', 1), ('val', 1)])
133
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
134
135

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
136
137
138
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
139
    }, 1)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
140
    hook.writer.add_snapshot_file.assert_called_with(
141
        tag=runner.work_dir.split('/')[-1],
142
143
        snapshot_file_path=osp.join(runner.work_dir, 'epoch_1.pth'),
        iteration=1)
144
145


Wang Xinjiang's avatar
Wang Xinjiang committed
146
147
148
149
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
150
    runner.run([loader, loader], [('train', 1), ('val', 1)])
Wang Xinjiang's avatar
Wang Xinjiang committed
151
152
153
    shutil.rmtree(runner.work_dir)


154
155
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_momentum_runner_hook(multi_optimziers):
Kai Chen's avatar
Kai Chen committed
156
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
157
158
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
159
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Wenwei Zhang's avatar
Wenwei Zhang committed
160
161

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
162
163
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
164
165
166
167
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
168
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
169
170

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
171
172
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
173
174
175
176
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
177
178
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
179
180

    # add pavi hook
181
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
182
    runner.register_hook(hook)
183
    runner.run([loader], [('train', 1)])
184
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
185
186
187

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01999999999999999,
                    'learning_rate/model2': 0.009999999999999995,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.2,
                    'learning_rate/model2': 0.1,
                    'momentum/model1': 0.85,
                    'momentum/model2': 0.8052631578947369,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.875,
                    'momentum/model2': 0.8289473684210527,
                }, 7)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01999999999999999,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.2,
                'momentum': 0.85
            }, 5),
            call('train', {
                'learning_rate': 0.155,
                'momentum': 0.875
            }, 7),
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
227
228
229
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


230
231
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_runner_hook(multi_optimziers):
Kai Chen's avatar
Kai Chen committed
232
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
233
234
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
235
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Wenwei Zhang's avatar
Wenwei Zhang committed
236
237

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
238
239
240

    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
241
242
243
244
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
245
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
246
247

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
248
249
250
251
252
253
254
255
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
256
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
257
    # add pavi hook
258
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
259
    runner.register_hook(hook)
260
    runner.run([loader], [('train', 1)])
261
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
262
263
264

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0004894348370484647,
                    'learning_rate/model2': 0.00024471741852423234,
                    'momentum/model1': 0.9890211303259032,
                    'momentum/model2': 0.9369673866245399,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0004894348370484647,
                    'momentum': 0.9890211303259032
                }, 10)
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
305
306
307
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


308
309
310
311
@pytest.mark.parametrize('multi_optimziers, max_iters', [(True, 10), (True, 2),
                                                         (False, 10),
                                                         (False, 2)])
def test_one_cycle_runner_hook(multi_optimziers, max_iters):
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    """Test OneCycleLrUpdaterHook and OneCycleMomentumUpdaterHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        OneCycleLrUpdaterHook(max_lr=0.1, by_epoch=True)

    with pytest.raises(ValueError):
        # expected float between 0 and 1
        OneCycleLrUpdaterHook(max_lr=0.1, pct_start=-0.1)

    with pytest.raises(ValueError):
        # anneal_strategy should be either 'cos' or 'linear'
        OneCycleLrUpdaterHook(max_lr=0.1, anneal_strategy='sin')

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
327
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
328
329
330
331
332
333
334
335
336
337
338

    # add momentum scheduler
    hook_cfg = dict(
        type='OneCycleMomentumUpdaterHook',
        base_momentum=0.85,
        max_momentum=0.95,
        pct_start=0.5,
        anneal_strategy='cos',
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)

339
    # add LR scheduler
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    hook_cfg = dict(
        type='OneCycleLrUpdaterHook',
        max_lr=0.01,
        pct_start=0.5,
        anneal_strategy='cos',
        div_factor=25,
        final_div_factor=1e4,
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.0003999999999999993,
                    'learning_rate/model2': 0.0003999999999999993,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.00904508879153485,
                    'learning_rate/model2': 0.00904508879153485,
                    'momentum/model1': 0.8595491502812526,
                    'momentum/model2': 0.8595491502812526,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 4e-08,
                    'learning_rate/model2': 4e-08,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.0003999999999999993,
                'momentum': 0.95
            }, 1),
            call(
                'train', {
                    'learning_rate': 0.00904508879153485,
                    'momentum': 0.8595491502812526
                }, 6),
            call('train', {
                'learning_rate': 4e-08,
                'momentum': 0.95
            }, 10)
        ]
399
400
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    # Test OneCycleLrUpdaterHook
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner', max_epochs=None, max_iters=max_iters)

    args = dict(
        max_lr=0.01,
        total_steps=5,
        pct_start=0.5,
        anneal_strategy='linear',
        div_factor=25,
        final_div_factor=1e4,
    )
    hook = OneCycleLrUpdaterHook(**args)
    runner.register_hook(hook)
    if max_iters == 10:
        # test total_steps < max_iters
        with pytest.raises(ValueError):
            runner.run([loader], [('train', 1)])
    else:
        # test total_steps > max_iters
        runner.run([loader], [('train', 1)])
        lr_last = runner.current_lr()
        t = torch.tensor([0.0], requires_grad=True)
        optim = torch.optim.SGD([t], lr=0.01)
        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optim, **args)
        lr_target = []
        for _ in range(max_iters):
            optim.step()
            lr_target.append(optim.param_groups[0]['lr'])
            lr_scheduler.step()
        assert lr_target[-1] == lr_last[0]

435

436
437
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_restart_lr_update_hook(multi_optimziers):
Harry's avatar
Harry committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
474
        runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
475
476
477
478
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
479
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Harry's avatar
Harry committed
480
481
482
483
484
485
486
487
488
489
490
491
492

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
493
    runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
494
495
496
497
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0009549150281252633,
                    'learning_rate/model2': 0.00047745751406263163,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.0009549150281252633,
                'momentum': 0.95
            }, 10)
        ]
Harry's avatar
Harry committed
537
538
539
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


540
541
542
543
544
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
545
546
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
547

548
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
549
    runner.register_hook(hook)
550
    runner.run([loader, loader], [('train', 1), ('val', 1)])
551
    shutil.rmtree(runner.work_dir)
552
553

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
554
555
556
557
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
558
        }, step=6)
559
560
561
562
563
564
565
566
567
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
            runner.model, 'models')
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
568
    runner = _build_demo_runner()
569
    hook = WandbLoggerHook()
Wenwei Zhang's avatar
Wenwei Zhang committed
570
    loader = DataLoader(torch.ones((5, 2)))
571
572

    runner.register_hook(hook)
573
    runner.run([loader, loader], [('train', 1), ('val', 1)])
574
575
    shutil.rmtree(runner.work_dir)

576
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
577
578
579
580
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
581
582
                                      step=6,
                                      commit=True)
583
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
584
585


586
587
def _build_demo_runner(runner_type='EpochBasedRunner',
                       max_epochs=1,
588
589
                       max_iters=None,
                       multi_optimziers=False):
590
591
592
593
594
595

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)
596
            self.conv = nn.Conv2d(3, 3, 3)
597
598
599
600
601
602
603
604
605
606
607
608

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

609
610
611
612
613
614
615
616
617
    if multi_optimziers:
        optimizer = {
            'model1':
            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
            'model2':
            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
        }
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
Wenwei Zhang's avatar
Wenwei Zhang committed
618
619
620
621
622
623

    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

624
    tmp_dir = tempfile.mkdtemp()
625
626
627
628
629
630
631
632
633
    runner = build_runner(
        dict(type=runner_type),
        default_args=dict(
            model=model,
            work_dir=tmp_dir,
            optimizer=optimizer,
            logger=logging.getLogger(),
            max_epochs=max_epochs,
            max_iters=max_iters))
634
    runner.register_checkpoint_hook(dict(interval=1))
Wenwei Zhang's avatar
Wenwei Zhang committed
635
636
    runner.register_logger_hooks(log_config)
    return runner
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675


def test_runner_with_revise_keys():

    import os

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

    class PrefixModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.backbone = Model()

    pmodel = PrefixModel()
    model = Model()
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')

    # add prefix
    torch.save(model.state_dict(), checkpoint_path)
    runner = _build_demo_runner(runner_type='EpochBasedRunner')
    runner.model = pmodel
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    for key in pmodel.backbone.state_dict().keys():
        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    # strip prefix
    torch.save(pmodel.state_dict(), checkpoint_path)
    runner.model = model
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    for key in state_dict.keys():
        key_stripped = re.sub(r'^backbone\.', '', key)
        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    os.remove(checkpoint_path)