tensorrt_plugin.md 7.42 KB
Newer Older
RunningLeon's avatar
RunningLeon committed
1
## TensorRT Deployment
2

3
4
5
6
### <span style="color:red">DeprecationWarning</span>

TensorRT support will be deprecated in the future.
Welcome to use the unified model deployment toolbox MMDeploy: https://github.com/open-mmlab/mmdeploy
7
8
<!-- TOC -->

RunningLeon's avatar
RunningLeon committed
9
- [TensorRT Deployment](#tensorrt-deployment)
10
  - [<span style="color:red">DeprecationWarning</span>](#deprecationwarning)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  - [Introduction](#introduction)
  - [List of TensorRT plugins supported in MMCV](#list-of-tensorrt-plugins-supported-in-mmcv)
  - [How to build TensorRT plugins in MMCV](#how-to-build-tensorrt-plugins-in-mmcv)
    - [Prerequisite](#prerequisite)
    - [Build on Linux](#build-on-linux)
  - [Create TensorRT engine and run inference in python](#create-tensorrt-engine-and-run-inference-in-python)
  - [How to add a TensorRT plugin for custom op in MMCV](#how-to-add-a-tensorrt-plugin-for-custom-op-in-mmcv)
    - [Main procedures](#main-procedures)
    - [Reminders](#reminders)
  - [Known Issues](#known-issues)
  - [References](#references)

<!-- TOC -->

25
### Introduction
26
27
28
29

**NVIDIA TensorRT** is a software development kit(SDK) for high-performance inference of deep learning models. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications. Please check its [developer's website](https://developer.nvidia.com/tensorrt) for more information.
To ease the deployment of trained models with custom operators from `mmcv.ops` using TensorRT, a series of TensorRT plugins are included in MMCV.

30
### List of TensorRT plugins supported in MMCV
31

RunningLeon's avatar
RunningLeon committed
32
33
34
35
36
37
38
39
40
| ONNX Operator             | TensorRT Plugin                                                                 | MMCV Releases |
|:--------------------------|:--------------------------------------------------------------------------------|:-------------:|
| MMCVRoiAlign              | [MMCVRoiAlign](./tensorrt_custom_ops.md#mmcvroialign)                           |     1.2.6     |
| ScatterND                 | [ScatterND](./tensorrt_custom_ops.md#scatternd)                                 |     1.2.6     |
| NonMaxSuppression         | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression)                 |     1.3.0     |
| MMCVDeformConv2d          | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d)                   |     1.3.0     |
| grid_sampler              | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler)                           |     1.3.1     |
| cummax                    | [cummax](./tensorrt_custom_ops.md#cummax)                                       |     1.3.5     |
| cummin                    | [cummin](./tensorrt_custom_ops.md#cummin)                                       |     1.3.5     |
41
| MMCVInstanceNormalization | [MMCVInstanceNormalization](./tensorrt_custom_ops.md#mmcvinstancenormalization) |     1.3.5     |
RunningLeon's avatar
RunningLeon committed
42
| MMCVModulatedDeformConv2d | [MMCVModulatedDeformConv2d](./tensorrt_custom_ops.md#mmcvmodulateddeformconv2d) |     1.3.8     |
SemyonBevzuk's avatar
SemyonBevzuk committed
43

44
45
46
47
Notes

- All plugins listed above are developed on TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0

48
### How to build TensorRT plugins in MMCV
49

50
#### Prerequisite
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

- Clone repository

```bash
git clone https://github.com/open-mmlab/mmcv.git
```

- Install TensorRT

Download the corresponding TensorRT build from [NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-tensorrt-download).

For example, for Ubuntu 16.04 on x86-64 with cuda-10.2, the downloaded file is `TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz`.

Then, install as below:

```bash
cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz
export TENSORRT_DIR=`pwd`/TensorRT-7.2.1.6
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TENSORRT_DIR/lib
```

Install python packages: tensorrt, graphsurgeon, onnx-graphsurgeon

```bash
pip install $TENSORRT_DIR/python/tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl
pip install $TENSORRT_DIR/onnx_graphsurgeon/onnx_graphsurgeon-0.2.6-py2.py3-none-any.whl
pip install $TENSORRT_DIR/graphsurgeon/graphsurgeon-0.4.5-py2.py3-none-any.whl
```

81
For more detailed information of installing TensorRT using tar, please refer to [Nvidia' website](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-721/install-guide/index.html#installing-tar).
82

83
84
85
86
- Install cuDNN

Install cuDNN 8 following [Nvidia' website](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar).

87
#### Build on Linux
88
89

```bash
90
cd mmcv ## to MMCV root directory
91
92
93
MMCV_WITH_OPS=1 MMCV_WITH_TRT=1 pip install -e .
```

94
### Create TensorRT engine and run inference in python
95
96
97
98
99
100
101

Here is an example.

```python
import torch
import onnx

lizz's avatar
lizz committed
102
from mmcv.tensorrt import (TRTWrapper, onnx2trt, save_trt_engine,
103
104
105
106
107
108
109
110
                                   is_tensorrt_plugin_loaded)

assert is_tensorrt_plugin_loaded(), 'Requires to complie TensorRT plugins in mmcv'

onnx_file = 'sample.onnx'
trt_file = 'sample.trt'
onnx_model = onnx.load(onnx_file)

111
## Model input
112
inputs = torch.rand(1, 3, 224, 224).cuda()
113
## Model input shape info
114
115
116
117
118
119
opt_shape_dict = {
    'input': [list(inputs.shape),
              list(inputs.shape),
              list(inputs.shape)]
}

120
## Create TensorRT engine
121
122
123
124
125
126
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
    onnx_model,
    opt_shape_dict,
    max_workspace_size=max_workspace_size)

127
## Save TensorRT engine
128
129
save_trt_engine(trt_engine, trt_file)

130
## Run inference with TensorRT
lizz's avatar
lizz committed
131
trt_model = TRTWrapper(trt_file, ['input'], ['output'])
132
133
134
135
136
137
138

with torch.no_grad():
    trt_outputs = trt_model({'input': inputs})
    output = trt_outputs['output']

```

139
### How to add a TensorRT plugin for custom op in MMCV
140

141
#### Main procedures
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

Below are the main steps:

1. Add c++ header file
2. Add c++ source file
3. Add cuda kernel file
4. Register plugin in `trt_plugin.cpp`
5. Add unit test in `tests/test_ops/test_tensorrt.py`

**Take RoIAlign plugin `roi_align` for example.**

1. Add header `trt_roi_align.hpp` to TensorRT include directory `mmcv/ops/csrc/tensorrt/`
2. Add source `trt_roi_align.cpp` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
3. Add cuda kernel `trt_roi_align_kernel.cu` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
4. Register `roi_align` plugin in [trt_plugin.cpp](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp)

    ```c++
    #include "trt_plugin.hpp"

    #include "trt_roi_align.hpp"

    REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator);

    extern "C" {
    bool initLibMMCVInferPlugins() { return true; }
    }  // extern "C"
    ```

5. Add unit test into `tests/test_ops/test_tensorrt.py`
   Check [here](https://github.com/open-mmlab/mmcv/blob/master/tests/test_ops/test_tensorrt.py) for examples.

173
#### Reminders
174

RunningLeon's avatar
RunningLeon committed
175
176
- *Please note that this feature is experimental and may change in the future. Strongly suggest users always try with the latest master branch.*

lizz's avatar
lizz committed
177
- Some of the [custom ops](https://mmcv.readthedocs.io/en/latest/ops.html) in `mmcv` have their cuda implementations, which could be referred.
178

179
### Known Issues
180
181
182

- None

183
### References
184
185
186
187
188
189

- [Developer guide of Nvidia TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html)
- [TensorRT Open Source Software](https://github.com/NVIDIA/TensorRT)
- [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt)
- [TensorRT python API](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html)
- [TensorRT c++ plugin API](https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin.html)