tensorrt_plugin.md 7 KB
Newer Older
RunningLeon's avatar
RunningLeon committed
1
## TensorRT Deployment
2
3
4

<!-- TOC -->

RunningLeon's avatar
RunningLeon committed
5
- [TensorRT Deployment](#tensorrt-deployment)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  - [Introduction](#introduction)
  - [List of TensorRT plugins supported in MMCV](#list-of-tensorrt-plugins-supported-in-mmcv)
  - [How to build TensorRT plugins in MMCV](#how-to-build-tensorrt-plugins-in-mmcv)
    - [Prerequisite](#prerequisite)
    - [Build on Linux](#build-on-linux)
  - [Create TensorRT engine and run inference in python](#create-tensorrt-engine-and-run-inference-in-python)
  - [How to add a TensorRT plugin for custom op in MMCV](#how-to-add-a-tensorrt-plugin-for-custom-op-in-mmcv)
    - [Main procedures](#main-procedures)
    - [Reminders](#reminders)
  - [Known Issues](#known-issues)
  - [References](#references)

<!-- TOC -->

20
### Introduction
21
22
23
24

**NVIDIA TensorRT** is a software development kit(SDK) for high-performance inference of deep learning models. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications. Please check its [developer's website](https://developer.nvidia.com/tensorrt) for more information.
To ease the deployment of trained models with custom operators from `mmcv.ops` using TensorRT, a series of TensorRT plugins are included in MMCV.

25
### List of TensorRT plugins supported in MMCV
26

RunningLeon's avatar
RunningLeon committed
27
28
29
30
31
32
33
34
35
| ONNX Operator             | TensorRT Plugin                                                                 | MMCV Releases |
|:--------------------------|:--------------------------------------------------------------------------------|:-------------:|
| MMCVRoiAlign              | [MMCVRoiAlign](./tensorrt_custom_ops.md#mmcvroialign)                           |     1.2.6     |
| ScatterND                 | [ScatterND](./tensorrt_custom_ops.md#scatternd)                                 |     1.2.6     |
| NonMaxSuppression         | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression)                 |     1.3.0     |
| MMCVDeformConv2d          | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d)                   |     1.3.0     |
| grid_sampler              | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler)                           |     1.3.1     |
| cummax                    | [cummax](./tensorrt_custom_ops.md#cummax)                                       |     1.3.5     |
| cummin                    | [cummin](./tensorrt_custom_ops.md#cummin)                                       |     1.3.5     |
36
| MMCVInstanceNormalization | [MMCVInstanceNormalization](./tensorrt_custom_ops.md#mmcvinstancenormalization) |     1.3.5     |
RunningLeon's avatar
RunningLeon committed
37
| MMCVModulatedDeformConv2d | [MMCVModulatedDeformConv2d](./tensorrt_custom_ops.md#mmcvmodulateddeformconv2d) |     1.3.8     |
SemyonBevzuk's avatar
SemyonBevzuk committed
38

39
40
41
42
Notes

- All plugins listed above are developed on TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0

43
### How to build TensorRT plugins in MMCV
44

45
#### Prerequisite
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

- Clone repository

```bash
git clone https://github.com/open-mmlab/mmcv.git
```

- Install TensorRT

Download the corresponding TensorRT build from [NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-tensorrt-download).

For example, for Ubuntu 16.04 on x86-64 with cuda-10.2, the downloaded file is `TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz`.

Then, install as below:

```bash
cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz
export TENSORRT_DIR=`pwd`/TensorRT-7.2.1.6
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TENSORRT_DIR/lib
```

Install python packages: tensorrt, graphsurgeon, onnx-graphsurgeon

```bash
pip install $TENSORRT_DIR/python/tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl
pip install $TENSORRT_DIR/onnx_graphsurgeon/onnx_graphsurgeon-0.2.6-py2.py3-none-any.whl
pip install $TENSORRT_DIR/graphsurgeon/graphsurgeon-0.4.5-py2.py3-none-any.whl
```

76
For more detailed information of installing TensorRT using tar, please refer to [Nvidia' website](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-721/install-guide/index.html#installing-tar).
77

78
#### Build on Linux
79
80

```bash
81
cd mmcv ## to MMCV root directory
82
83
84
MMCV_WITH_OPS=1 MMCV_WITH_TRT=1 pip install -e .
```

85
### Create TensorRT engine and run inference in python
86
87
88
89
90
91
92

Here is an example.

```python
import torch
import onnx

lizz's avatar
lizz committed
93
from mmcv.tensorrt import (TRTWrapper, onnx2trt, save_trt_engine,
94
95
96
97
98
99
100
101
                                   is_tensorrt_plugin_loaded)

assert is_tensorrt_plugin_loaded(), 'Requires to complie TensorRT plugins in mmcv'

onnx_file = 'sample.onnx'
trt_file = 'sample.trt'
onnx_model = onnx.load(onnx_file)

102
## Model input
103
inputs = torch.rand(1, 3, 224, 224).cuda()
104
## Model input shape info
105
106
107
108
109
110
opt_shape_dict = {
    'input': [list(inputs.shape),
              list(inputs.shape),
              list(inputs.shape)]
}

111
## Create TensorRT engine
112
113
114
115
116
117
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
    onnx_model,
    opt_shape_dict,
    max_workspace_size=max_workspace_size)

118
## Save TensorRT engine
119
120
save_trt_engine(trt_engine, trt_file)

121
## Run inference with TensorRT
lizz's avatar
lizz committed
122
trt_model = TRTWrapper(trt_file, ['input'], ['output'])
123
124
125
126
127
128
129

with torch.no_grad():
    trt_outputs = trt_model({'input': inputs})
    output = trt_outputs['output']

```

130
### How to add a TensorRT plugin for custom op in MMCV
131

132
#### Main procedures
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

Below are the main steps:

1. Add c++ header file
2. Add c++ source file
3. Add cuda kernel file
4. Register plugin in `trt_plugin.cpp`
5. Add unit test in `tests/test_ops/test_tensorrt.py`

**Take RoIAlign plugin `roi_align` for example.**

1. Add header `trt_roi_align.hpp` to TensorRT include directory `mmcv/ops/csrc/tensorrt/`
2. Add source `trt_roi_align.cpp` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
3. Add cuda kernel `trt_roi_align_kernel.cu` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
4. Register `roi_align` plugin in [trt_plugin.cpp](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp)

    ```c++
    #include "trt_plugin.hpp"

    #include "trt_roi_align.hpp"

    REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator);

    extern "C" {
    bool initLibMMCVInferPlugins() { return true; }
    }  // extern "C"
    ```

5. Add unit test into `tests/test_ops/test_tensorrt.py`
   Check [here](https://github.com/open-mmlab/mmcv/blob/master/tests/test_ops/test_tensorrt.py) for examples.

164
#### Reminders
165

RunningLeon's avatar
RunningLeon committed
166
167
- *Please note that this feature is experimental and may change in the future. Strongly suggest users always try with the latest master branch.*

lizz's avatar
lizz committed
168
- Some of the [custom ops](https://mmcv.readthedocs.io/en/latest/ops.html) in `mmcv` have their cuda implementations, which could be referred.
169

170
### Known Issues
171
172
173

- None

174
### References
175
176
177
178
179
180

- [Developer guide of Nvidia TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html)
- [TensorRT Open Source Software](https://github.com/NVIDIA/TensorRT)
- [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt)
- [TensorRT python API](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html)
- [TensorRT c++ plugin API](https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin.html)