tensorrt_plugin.md 7.14 KB
Newer Older
RunningLeon's avatar
RunningLeon committed
1
## TensorRT Deployment
2
3
4

<!-- TOC -->

RunningLeon's avatar
RunningLeon committed
5
- [TensorRT Deployment](#tensorrt-deployment)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  - [Introduction](#introduction)
  - [List of TensorRT plugins supported in MMCV](#list-of-tensorrt-plugins-supported-in-mmcv)
  - [How to build TensorRT plugins in MMCV](#how-to-build-tensorrt-plugins-in-mmcv)
    - [Prerequisite](#prerequisite)
    - [Build on Linux](#build-on-linux)
  - [Create TensorRT engine and run inference in python](#create-tensorrt-engine-and-run-inference-in-python)
  - [How to add a TensorRT plugin for custom op in MMCV](#how-to-add-a-tensorrt-plugin-for-custom-op-in-mmcv)
    - [Main procedures](#main-procedures)
    - [Reminders](#reminders)
  - [Known Issues](#known-issues)
  - [References](#references)

<!-- TOC -->

20
### Introduction
21
22
23
24

**NVIDIA TensorRT** is a software development kit(SDK) for high-performance inference of deep learning models. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications. Please check its [developer's website](https://developer.nvidia.com/tensorrt) for more information.
To ease the deployment of trained models with custom operators from `mmcv.ops` using TensorRT, a series of TensorRT plugins are included in MMCV.

25
### List of TensorRT plugins supported in MMCV
26

RunningLeon's avatar
RunningLeon committed
27
28
29
30
31
32
33
34
35
| ONNX Operator             | TensorRT Plugin                                                                 | MMCV Releases |
|:--------------------------|:--------------------------------------------------------------------------------|:-------------:|
| MMCVRoiAlign              | [MMCVRoiAlign](./tensorrt_custom_ops.md#mmcvroialign)                           |     1.2.6     |
| ScatterND                 | [ScatterND](./tensorrt_custom_ops.md#scatternd)                                 |     1.2.6     |
| NonMaxSuppression         | [NonMaxSuppression](./tensorrt_custom_ops.md#nonmaxsuppression)                 |     1.3.0     |
| MMCVDeformConv2d          | [MMCVDeformConv2d](./tensorrt_custom_ops.md#mmcvdeformconv2d)                   |     1.3.0     |
| grid_sampler              | [grid_sampler](./tensorrt_custom_ops.md#grid-sampler)                           |     1.3.1     |
| cummax                    | [cummax](./tensorrt_custom_ops.md#cummax)                                       |     1.3.5     |
| cummin                    | [cummin](./tensorrt_custom_ops.md#cummin)                                       |     1.3.5     |
36
| MMCVInstanceNormalization | [MMCVInstanceNormalization](./tensorrt_custom_ops.md#mmcvinstancenormalization) |     1.3.5     |
RunningLeon's avatar
RunningLeon committed
37
| MMCVModulatedDeformConv2d | [MMCVModulatedDeformConv2d](./tensorrt_custom_ops.md#mmcvmodulateddeformconv2d) |     1.3.8     |
SemyonBevzuk's avatar
SemyonBevzuk committed
38

39
40
41
42
Notes

- All plugins listed above are developed on TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0

43
### How to build TensorRT plugins in MMCV
44

45
#### Prerequisite
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

- Clone repository

```bash
git clone https://github.com/open-mmlab/mmcv.git
```

- Install TensorRT

Download the corresponding TensorRT build from [NVIDIA Developer Zone](https://developer.nvidia.com/nvidia-tensorrt-download).

For example, for Ubuntu 16.04 on x86-64 with cuda-10.2, the downloaded file is `TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz`.

Then, install as below:

```bash
cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0.tar.gz
export TENSORRT_DIR=`pwd`/TensorRT-7.2.1.6
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TENSORRT_DIR/lib
```

Install python packages: tensorrt, graphsurgeon, onnx-graphsurgeon

```bash
pip install $TENSORRT_DIR/python/tensorrt-7.2.1.6-cp37-none-linux_x86_64.whl
pip install $TENSORRT_DIR/onnx_graphsurgeon/onnx_graphsurgeon-0.2.6-py2.py3-none-any.whl
pip install $TENSORRT_DIR/graphsurgeon/graphsurgeon-0.4.5-py2.py3-none-any.whl
```

76
For more detailed information of installing TensorRT using tar, please refer to [Nvidia' website](https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-721/install-guide/index.html#installing-tar).
77

78
79
80
81
- Install cuDNN

Install cuDNN 8 following [Nvidia' website](https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#installlinux-tar).

82
#### Build on Linux
83
84

```bash
85
cd mmcv ## to MMCV root directory
86
87
88
MMCV_WITH_OPS=1 MMCV_WITH_TRT=1 pip install -e .
```

89
### Create TensorRT engine and run inference in python
90
91
92
93
94
95
96

Here is an example.

```python
import torch
import onnx

lizz's avatar
lizz committed
97
from mmcv.tensorrt import (TRTWrapper, onnx2trt, save_trt_engine,
98
99
100
101
102
103
104
105
                                   is_tensorrt_plugin_loaded)

assert is_tensorrt_plugin_loaded(), 'Requires to complie TensorRT plugins in mmcv'

onnx_file = 'sample.onnx'
trt_file = 'sample.trt'
onnx_model = onnx.load(onnx_file)

106
## Model input
107
inputs = torch.rand(1, 3, 224, 224).cuda()
108
## Model input shape info
109
110
111
112
113
114
opt_shape_dict = {
    'input': [list(inputs.shape),
              list(inputs.shape),
              list(inputs.shape)]
}

115
## Create TensorRT engine
116
117
118
119
120
121
max_workspace_size = 1 << 30
trt_engine = onnx2trt(
    onnx_model,
    opt_shape_dict,
    max_workspace_size=max_workspace_size)

122
## Save TensorRT engine
123
124
save_trt_engine(trt_engine, trt_file)

125
## Run inference with TensorRT
lizz's avatar
lizz committed
126
trt_model = TRTWrapper(trt_file, ['input'], ['output'])
127
128
129
130
131
132
133

with torch.no_grad():
    trt_outputs = trt_model({'input': inputs})
    output = trt_outputs['output']

```

134
### How to add a TensorRT plugin for custom op in MMCV
135

136
#### Main procedures
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

Below are the main steps:

1. Add c++ header file
2. Add c++ source file
3. Add cuda kernel file
4. Register plugin in `trt_plugin.cpp`
5. Add unit test in `tests/test_ops/test_tensorrt.py`

**Take RoIAlign plugin `roi_align` for example.**

1. Add header `trt_roi_align.hpp` to TensorRT include directory `mmcv/ops/csrc/tensorrt/`
2. Add source `trt_roi_align.cpp` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
3. Add cuda kernel `trt_roi_align_kernel.cu` to TensorRT source directory `mmcv/ops/csrc/tensorrt/plugins/`
4. Register `roi_align` plugin in [trt_plugin.cpp](https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/tensorrt/plugins/trt_plugin.cpp)

    ```c++
    #include "trt_plugin.hpp"

    #include "trt_roi_align.hpp"

    REGISTER_TENSORRT_PLUGIN(RoIAlignPluginDynamicCreator);

    extern "C" {
    bool initLibMMCVInferPlugins() { return true; }
    }  // extern "C"
    ```

5. Add unit test into `tests/test_ops/test_tensorrt.py`
   Check [here](https://github.com/open-mmlab/mmcv/blob/master/tests/test_ops/test_tensorrt.py) for examples.

168
#### Reminders
169

RunningLeon's avatar
RunningLeon committed
170
171
- *Please note that this feature is experimental and may change in the future. Strongly suggest users always try with the latest master branch.*

lizz's avatar
lizz committed
172
- Some of the [custom ops](https://mmcv.readthedocs.io/en/latest/ops.html) in `mmcv` have their cuda implementations, which could be referred.
173

174
### Known Issues
175
176
177

- None

178
### References
179
180
181
182
183
184

- [Developer guide of Nvidia TensorRT](https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html)
- [TensorRT Open Source Software](https://github.com/NVIDIA/TensorRT)
- [onnx-tensorrt](https://github.com/onnx/onnx-tensorrt)
- [TensorRT python API](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html)
- [TensorRT c++ plugin API](https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin.html)