albert_dataset.py 14.2 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
"""TO BE ADDED """

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
3
import os
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
4
5
6
7
8
9
10
import random
import time

import numpy as np
import torch
from torch.utils.data import Dataset

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
11
from megatron.data import helpers
12
from megatron.data import FullBertTokenizer
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
13
from megatron.data.dataset_utils import build_training_sample
14
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
15
from megatron.utils import print_rank_0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16

17
18
19

class AlbertDataset(Dataset):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
20
21
22
    def __init__(self, vocab_file, data_prefix, data_impl, skip_warmup,
                 num_epochs, max_num_samples, masked_lm_prob, max_seq_length,
                 short_seq_prob, seed):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
23
24
25
26
27

        # Params to store.
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length
28
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
29
30

        # Indexed dataset.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
31
32
33
        self.indexed_dataset = get_indexed_dataset_(data_prefix,
                                                    data_impl,
                                                    skip_warmup)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
34
35

        # Build the samples mapping.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
36
37
38
39
40
41
42
        self.samples_mapping = get_samples_mapping_(self.indexed_dataset,
                                                    data_prefix,
                                                    num_epochs,
                                                    max_num_samples,
                                                    self.max_seq_length,
                                                    short_seq_prob,
                                                    self.seed)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
43
44

        # Vocab stuff.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
45
46
47
48
49
50
        self.vocab_id_list = list(self.tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = self.tokenizer.inv_vocab
        self.cls_id = self.tokenizer.vocab['[CLS]']
        self.sep_id = self.tokenizer.vocab['[SEP]']
        self.mask_id = self.tokenizer.vocab['[MASK]']
        self.pad_id = self.tokenizer.vocab['[PAD]']
51
        exit()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
52
53


54
55
56
    def num_tokens(self):
        return self.tokenizer.vocab_size()

57

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
58
    def __len__(self):
59
        return self.samples_mapping.shape[0]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
60

61

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
62
    def __getitem__(self, idx):
63

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
64
65
        # Note that this rng state should be python and not numpy since
        # python randint is inclusive whereas the numpy one is exclusive.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
66
67
68
69
70
        rng = random.Random(self.seed + idx)
        start_index, end_index, seq_length = self.samples_mapping[idx]
        sample = []
        for index in range(start_index, end_index):
            sample.append(self.indexed_dataset[index])
71
72
73
        for s in sample:
            if len(s) > 1000:
                print(self.tokenizer.convert_ids_to_tokens(s))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
74
        return build_training_sample(sample, seq_length,
75
                                     self.max_seq_length, # needed for padding
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
76
77
78
79
80
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
81

82
83


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
    start_time = time.time()
    print_rank_0("> Reading dataset index ...")
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
    print_rank_0("> Finished creating indexed dataset in {:4f} "
                 "seconds".format(time.time() - start_time))
    return indexed_dataset


def get_samples_mapping_(indexed_dataset,
                         data_prefix,
                         num_epochs,
                         max_num_samples,
                         max_seq_length,
                         short_seq_prob,
                         seed):
    if not num_epochs:
103
        if not max_num_samples:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_indexmap'
    indexmap_filename += '_{}ep'.format(num_epochs)
    indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
        print('WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))
        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
131
        start_time = time.time()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length-3, # account for added tokens
            short_seq_prob,
            seed,
            verbose)
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
        # Make sure all the ranks have built the mapping
        print_rank_0('> elasped time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
    torch.distributed.barrier()

    # Load indexed dataset.
    print_rank_0('> loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True)
    print_rank_0('  loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('  total number of samples: {}'.format(
        samples_mapping.shape[0]))
157

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158
    return samples_mapping
159
160


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161
'''
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def get_target_seq_length(max_num_tokens, short_seq_prob, np_rng):
    """With probability `short_seq_prob` generate a smaller sequence lenght."""
    if np_rng.random() < short_seq_prob:
        return np_rng.randint(2, max_num_tokens + 1)
    return max_num_tokens


def build_training_samples_mapping(indexed_dataset, num_epochs, max_seq_length,
                                   short_seq_prob, seed):
    """Build a mapping to reconstruct training samples."""

    start_time = time.time()
    print('> building training samples mapping ...')

    # RNG:
    np_rng = np.random.RandomState(seed=seed)

    # List of start sentence index and end sentence index (end is exclusive)
    # to retrieve.
    samples = []

    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # Number of documents processed:
    total_docs = 0
    # Number of documents that are skipped:
    skipped_docs = 0
    # Number of empty documents:
    empty_docs = 0

    # For each epoch:
    for epoch in range(num_epochs):
        # For each document:
        for doc_index in range(indexed_dataset.num_docs):
            if epoch == 0:
                total_docs += 1

            # Document sentences are in [sent_index_first, sent_index_last).
            sent_index_first = indexed_dataset.doc_idx[doc_index]
            sent_index_last = indexed_dataset.doc_idx[doc_index+1]
203
            assert sent_index_last >= sent_index_first
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

            # Empty docs.
            if (sent_index_last - sent_index_first) == 0:
                if epoch == 0:
                    print('***WARNING*** document {} is empty'.format(
                        doc_index))
                    empty_docs += 1
                continue
            # Skip documents that only have one sentences.
            if (sent_index_last - sent_index_first) == 1:
                if epoch == 0:
                    print('***WARNING*** document {} has only one sentnece, '
                          'skipping ...'.format(doc_index))
                    skipped_docs += 1
                continue

            # Loop through sentences.
            sent_index = sent_index_first
            target_seq_length = get_target_seq_length(max_num_tokens,
223
                                                      short_seq_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
224
225
226
227
            size = 0
            while sent_index < sent_index_last:

                # Get the size.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
228
                assert indexed_dataset.sizes[sent_index] > 0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
229
230
231
232
233
234
235
                size += indexed_dataset.sizes[sent_index]
                sent_index += 1

                # If we have reached the target length.
                exceeded_target_size = (size >= target_seq_length)
                # If only one sentence is left in the document.
                only_one_sent_left = (sent_index == (sent_index_last - 1))
236
237
                # If we have at least two sentneces.
                have_more_than_one_sent = (sent_index - sent_index_first) > 1
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
238
239
                # If we have reached end of the document.
                reached_end_of_doc = (sent_index == sent_index_last)
240
241
                if (exceeded_target_size and not only_one_sent_left and
                    have_more_than_one_sent) or reached_end_of_doc:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
242
243
244
                    assert (sent_index - sent_index_first) > 1
                    assert size > 1
                    # Add the sample.
245
246
                    samples.append([sent_index_first, sent_index,
                                    target_seq_length])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
247
248
249
250
                    # Reset indices
                    sent_index_first = sent_index
                    target_seq_length = get_target_seq_length(max_num_tokens,
                                                              short_seq_prob,
251
                                                              np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
                    size = 0
                    num_sentences = 0

    # Convert to numpy array.
    samples_np = np.array(samples, dtype=np.int64)
    # Shuffle.
    np_rng.shuffle(samples_np)
    elapsed_time = time.time() - start_time

    # Print some stats:
    print('\n***************************** info *****************************')
    print('   elapsed time (sec) ..................... {}'.format(elapsed_time))
    print('   number of epochs ....................... {}'.format(num_epochs))
    print('   number of samples ...................... {}'.format(
        samples_np.shape[0]))
    print('   number of documents .................... {}'.format(total_docs))
    print('   number of empty documents .............. {}'.format(empty_docs))
    print('   number of documents with one sentence .. {}'.format(skipped_docs))
    print('****************************************************************\n')

    return samples_np
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
273
'''
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
274

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
275
'''
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
276
277
# WILL BE REPLACED WITH JARED'S
class JaredDataset(object):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
278

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
279
280
281
282
283
    def __init__(self, doc_idx, sizes, sentences):
        self.doc_idx = doc_idx
        self.num_docs = len(self.doc_idx) - 1
        self.sizes = sizes
        self.sentences = sentences
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
284
285

    def __getitem__(self, idx):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
286
        return self.sentences[idx]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
287
288
289
290
291



if __name__ == '__main__':
    print('dataset ...')
292
293
294
295
296
297
298
299
300
301
302
303
304
305

    from bert_tokenization import FullTokenizer
    import json
    import nltk
    nltk.download('punkt')

    def document_generator_provider(input_file):
        with open(input_file, 'r') as ifile:
            for document in ifile:
                data = json.loads(document)
                text = data['text']
                sentences = []
                for line in text.split('\n'):
                    if line != '\n':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
306
307
308
                        sent = nltk.tokenize.sent_tokenize(line)
                        if sent:
                            sentences.extend(sent)
309
310
                yield sentences

311
312
    input_file = 'test/samples_10000.json'
    vocab_file = 'test/vocab.txt'
313
314
315
316
317
318
319
320
321

    tokenizer = FullTokenizer(vocab_file, do_lower_case=True)
    document_generator = document_generator_provider(input_file)

    doc_idx = [0]
    sizes = []
    sentences_list = []

    for sentences in document_generator:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
322
        num_sent = 0
323
324
        for sentence in sentences:
            tokens = tokenizer.tokenize(sentence)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
325
326
327
328
329
330
331
332
333
334
335
336
            if tokens:
                ids = tokenizer.convert_tokens_to_ids(tokens)
                if len(ids) == 0:
                    print('****************')
                    print(sentence)
                    print(tokens)
                    print(ids)
                    print('****************')
                sizes.append(len(ids))
                sentences_list.append(ids)
                num_sent += 1
        doc_idx.append(num_sent)
337
338
339
    for i in range(1, len(doc_idx)):
        doc_idx[i] += doc_idx[i-1]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    #max_size = np.iinfo(np.int32).max // 32

    import time

    docs_np = np.array(doc_idx, dtype=np.uint32)
    sizes_np = np.array(sizes, dtype=np.uint16)

    start_time = time.time()
    max_seq_length = 512
    max_size = docs_np.shape[0]
    lens = np.full(max_size, max_seq_length-3, dtype=np.uint16)
    lens_rand = np.random.randint(low=2, high=(max_seq_length-2),
                                  size=max_size//10, dtype=np.uint16)
    lens_view = lens[:max_size//10]
    np.copyto(lens_view, lens_rand)
    np.random.shuffle(lens)
    print('num docs', max_size)
    print('lens time', time.time() - start_time)

    import helpers
    start_time = time.time()
    maps = helpers.build_mapping(docs_np, sizes_np, 10, 100, 509, 0.1, 1234)
    print('maps time', time.time() - start_time)
    print(maps)
    exit()

    start_time = time.time()
    max_size = 10 #np.iinfo(np.int32).max 32
    docs = np.arange(10, dtype=np.uint32)
    print(docs)

    a = example.doit(docs, max_size)
    print(type(a))
    print(a.shape)
    print(a)
    print(time.time() - start_time)
    exit()


    #start_time = time.time()
    count = doit(maps, docs_np, sizes_np, lens,docs_np.shape[0]-1, 10)
    print(count)
    maps = maps[:count]
    np.random.shuffle(maps)
    print(time.time() - start_time)


    exit()

389
390
391
    indexed_dataset = JaredDataset(doc_idx, sizes, sentences_list)
    dataset = AlbertDataSet(indexed_dataset=indexed_dataset,
                            tokenizer=tokenizer,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
392
                            num_epochs=10,
393
394
395
396
                            masked_lm_prob=0.15,
                            max_seq_length=512,
                            short_seq_prob=0.1,
                            seed=1234)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
397
'''