albert_dataset.py 12.1 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
"""TO BE ADDED """

import random
import time

import numpy as np
import torch
from torch.utils.data import Dataset

10
from .dataset_utils import build_training_sample
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
11
#from data.mapping import build_training_samples_mapping
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
12

13
14
from . import helpers
from megatron.data import FullBertTokenizer, indexed_dataset
15
from megatron.utils import print_rank_0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16

17
18
19
20

class AlbertDataset(Dataset):

    def __init__(self, indexed_dataset, tokenizer, num_epochs, max_num_samples,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
21
22
23
24
25
26
                 masked_lm_prob, max_seq_length, short_seq_prob, seed):

        # Params to store.
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length
27
        self.tokenizer = tokenizer
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
29
30
31
32

        # Indexed dataset.
        self.indexed_dataset = indexed_dataset

        # Build the samples mapping.
33
34
        if not num_epochs:
            if not max_num_samples:
35
36
37
                raise ValueError("Need to specify either max_num_samples "
                                 "or num_epochs")
            num_epochs = np.iinfo(np.int32).max - 1
38
        if not max_num_samples:
39
40
41
42
43
44
45
46
47
            max_num_samples = np.iinfo(np.int64).max - 1

        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank()==0
        start_time = time.time()
48
49
50
        self.samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
51
            num_epochs,
52
53
            max_num_samples,
            self.max_seq_length-3, # account for added tokens
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
54
            short_seq_prob,
55
56
57
58
59
60
61
62
            self.seed,
            verbose)
        # Make sure all the ranks have built the mapping
        torch.distributed.barrier()
        print_rank_0('> elasped time to build samples mapping (seconds): '
                     '{:2f}'.format(time.time() - start_time))

        exit()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
63
64
65
66
67
68
69
70
71
72

        # Vocab stuff.
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.vocab['[CLS]']
        self.sep_id = tokenizer.vocab['[SEP]']
        self.mask_id = tokenizer.vocab['[MASK]']
        self.pad_id = tokenizer.vocab['[PAD]']


73
74
75
    @classmethod
    def from_paths(cls, vocab, data_prefix, data_impl,
                   num_epochs, max_num_samples, masked_lm_prob,
76
                   max_seq_length, short_seq_prob, seed, skip_warmup=False):
77
        tokenizer = FullBertTokenizer(vocab, do_lower_case=True)
78
79
80
81
82
83
        print_rank_0("> Reading dataset index ...")
        idx_ds = indexed_dataset.make_dataset(data_prefix, data_impl,
                                              skip_warmup)
        print_rank_0("> Finished creating indexed dataset")
        return cls(idx_ds, tokenizer, num_epochs, max_num_samples,
                   masked_lm_prob, max_seq_length, short_seq_prob, seed)
84

85
86
87
    def num_tokens(self):
        return self.tokenizer.vocab_size()

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88
    def __len__(self):
89
        return self.samples_mapping.shape[0]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
90
91

    def __getitem__(self, idx):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
92
93
94
95
96
        rng = random.Random(self.seed + idx)
        start_index, end_index, seq_length = self.samples_mapping[idx]
        sample = []
        for index in range(start_index, end_index):
            sample.append(self.indexed_dataset[index])
97
98
99
        for s in sample:
            if len(s) > 1000:
                print(self.tokenizer.convert_ids_to_tokens(s))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
100
101
102
103
104
105
106
        return build_training_sample(sample, seq_length,
                                     self.max_seq_length,
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
107

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
108
'''
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def get_target_seq_length(max_num_tokens, short_seq_prob, np_rng):
    """With probability `short_seq_prob` generate a smaller sequence lenght."""
    if np_rng.random() < short_seq_prob:
        return np_rng.randint(2, max_num_tokens + 1)
    return max_num_tokens


def build_training_samples_mapping(indexed_dataset, num_epochs, max_seq_length,
                                   short_seq_prob, seed):
    """Build a mapping to reconstruct training samples."""

    start_time = time.time()
    print('> building training samples mapping ...')

    # RNG:
    np_rng = np.random.RandomState(seed=seed)

    # List of start sentence index and end sentence index (end is exclusive)
    # to retrieve.
    samples = []

    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # Number of documents processed:
    total_docs = 0
    # Number of documents that are skipped:
    skipped_docs = 0
    # Number of empty documents:
    empty_docs = 0

    # For each epoch:
    for epoch in range(num_epochs):
        # For each document:
        for doc_index in range(indexed_dataset.num_docs):
            if epoch == 0:
                total_docs += 1

            # Document sentences are in [sent_index_first, sent_index_last).
            sent_index_first = indexed_dataset.doc_idx[doc_index]
            sent_index_last = indexed_dataset.doc_idx[doc_index+1]
150
            assert sent_index_last >= sent_index_first
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

            # Empty docs.
            if (sent_index_last - sent_index_first) == 0:
                if epoch == 0:
                    print('***WARNING*** document {} is empty'.format(
                        doc_index))
                    empty_docs += 1
                continue
            # Skip documents that only have one sentences.
            if (sent_index_last - sent_index_first) == 1:
                if epoch == 0:
                    print('***WARNING*** document {} has only one sentnece, '
                          'skipping ...'.format(doc_index))
                    skipped_docs += 1
                continue

            # Loop through sentences.
            sent_index = sent_index_first
            target_seq_length = get_target_seq_length(max_num_tokens,
170
                                                      short_seq_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
171
172
173
174
            size = 0
            while sent_index < sent_index_last:

                # Get the size.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
175
                assert indexed_dataset.sizes[sent_index] > 0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
176
177
178
179
180
181
182
                size += indexed_dataset.sizes[sent_index]
                sent_index += 1

                # If we have reached the target length.
                exceeded_target_size = (size >= target_seq_length)
                # If only one sentence is left in the document.
                only_one_sent_left = (sent_index == (sent_index_last - 1))
183
184
                # If we have at least two sentneces.
                have_more_than_one_sent = (sent_index - sent_index_first) > 1
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
185
186
                # If we have reached end of the document.
                reached_end_of_doc = (sent_index == sent_index_last)
187
188
                if (exceeded_target_size and not only_one_sent_left and
                    have_more_than_one_sent) or reached_end_of_doc:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
189
190
191
                    assert (sent_index - sent_index_first) > 1
                    assert size > 1
                    # Add the sample.
192
193
                    samples.append([sent_index_first, sent_index,
                                    target_seq_length])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
194
195
196
197
                    # Reset indices
                    sent_index_first = sent_index
                    target_seq_length = get_target_seq_length(max_num_tokens,
                                                              short_seq_prob,
198
                                                              np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
                    size = 0
                    num_sentences = 0

    # Convert to numpy array.
    samples_np = np.array(samples, dtype=np.int64)
    # Shuffle.
    np_rng.shuffle(samples_np)
    elapsed_time = time.time() - start_time

    # Print some stats:
    print('\n***************************** info *****************************')
    print('   elapsed time (sec) ..................... {}'.format(elapsed_time))
    print('   number of epochs ....................... {}'.format(num_epochs))
    print('   number of samples ...................... {}'.format(
        samples_np.shape[0]))
    print('   number of documents .................... {}'.format(total_docs))
    print('   number of empty documents .............. {}'.format(empty_docs))
    print('   number of documents with one sentence .. {}'.format(skipped_docs))
    print('****************************************************************\n')

    return samples_np
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
220
'''
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
221

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
222
223
# WILL BE REPLACED WITH JARED'S
class JaredDataset(object):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
224

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
225
226
227
228
229
    def __init__(self, doc_idx, sizes, sentences):
        self.doc_idx = doc_idx
        self.num_docs = len(self.doc_idx) - 1
        self.sizes = sizes
        self.sentences = sentences
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
230
231

    def __getitem__(self, idx):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
232
        return self.sentences[idx]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
233
234
235
236
237



if __name__ == '__main__':
    print('dataset ...')
238
239
240
241
242
243
244
245
246
247
248
249
250
251

    from bert_tokenization import FullTokenizer
    import json
    import nltk
    nltk.download('punkt')

    def document_generator_provider(input_file):
        with open(input_file, 'r') as ifile:
            for document in ifile:
                data = json.loads(document)
                text = data['text']
                sentences = []
                for line in text.split('\n'):
                    if line != '\n':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
252
253
254
                        sent = nltk.tokenize.sent_tokenize(line)
                        if sent:
                            sentences.extend(sent)
255
256
                yield sentences

257
258
    input_file = 'test/samples_10000.json'
    vocab_file = 'test/vocab.txt'
259
260
261
262
263
264
265
266
267

    tokenizer = FullTokenizer(vocab_file, do_lower_case=True)
    document_generator = document_generator_provider(input_file)

    doc_idx = [0]
    sizes = []
    sentences_list = []

    for sentences in document_generator:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
268
        num_sent = 0
269
270
        for sentence in sentences:
            tokens = tokenizer.tokenize(sentence)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
271
272
273
274
275
276
277
278
279
280
281
282
            if tokens:
                ids = tokenizer.convert_tokens_to_ids(tokens)
                if len(ids) == 0:
                    print('****************')
                    print(sentence)
                    print(tokens)
                    print(ids)
                    print('****************')
                sizes.append(len(ids))
                sentences_list.append(ids)
                num_sent += 1
        doc_idx.append(num_sent)
283
284
285
    for i in range(1, len(doc_idx)):
        doc_idx[i] += doc_idx[i-1]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    #max_size = np.iinfo(np.int32).max // 32

    import time

    docs_np = np.array(doc_idx, dtype=np.uint32)
    sizes_np = np.array(sizes, dtype=np.uint16)

    start_time = time.time()
    max_seq_length = 512
    max_size = docs_np.shape[0]
    lens = np.full(max_size, max_seq_length-3, dtype=np.uint16)
    lens_rand = np.random.randint(low=2, high=(max_seq_length-2),
                                  size=max_size//10, dtype=np.uint16)
    lens_view = lens[:max_size//10]
    np.copyto(lens_view, lens_rand)
    np.random.shuffle(lens)
    print('num docs', max_size)
    print('lens time', time.time() - start_time)

    import helpers
    start_time = time.time()
    maps = helpers.build_mapping(docs_np, sizes_np, 10, 100, 509, 0.1, 1234)
    print('maps time', time.time() - start_time)
    print(maps)
    exit()

    start_time = time.time()
    max_size = 10 #np.iinfo(np.int32).max 32
    docs = np.arange(10, dtype=np.uint32)
    print(docs)

    a = example.doit(docs, max_size)
    print(type(a))
    print(a.shape)
    print(a)
    print(time.time() - start_time)
    exit()


    #start_time = time.time()
    count = doit(maps, docs_np, sizes_np, lens,docs_np.shape[0]-1, 10)
    print(count)
    maps = maps[:count]
    np.random.shuffle(maps)
    print(time.time() - start_time)


    exit()

335
336
337
    indexed_dataset = JaredDataset(doc_idx, sizes, sentences_list)
    dataset = AlbertDataSet(indexed_dataset=indexed_dataset,
                            tokenizer=tokenizer,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
338
                            num_epochs=10,
339
340
341
342
                            masked_lm_prob=0.15,
                            max_seq_length=512,
                            short_seq_prob=0.1,
                            seed=1234)