albert_dataset.py 14.4 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
"""TO BE ADDED """

import random
import time
5
import os
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
6
7
8
9
10

import numpy as np
import torch
from torch.utils.data import Dataset

11
from .dataset_utils import build_training_sample
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
12
#from data.mapping import build_training_samples_mapping
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
13

14
from . import helpers
15
16
from megatron.data import FullBertTokenizer
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
17
from megatron.utils import print_rank_0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
18

19
20
21

class AlbertDataset(Dataset):

22
23
24
25

    def __init__(self,
                 vocab_file, data_prefix, data_impl, skip_warmup,
                 num_epochs, max_num_samples,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
26
27
28
29
30
31
                 masked_lm_prob, max_seq_length, short_seq_prob, seed):

        # Params to store.
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length
32
        self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
33
34

        # Indexed dataset.
35
36
        self.indexed_dataset = self._get_indexed_dataset(data_prefix, data_impl,
                                                         skip_warmup)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
37
38

        # Build the samples mapping.
39
40
41
42
43
44
45
        self.samples_mapping = self._get_samples_mapping(self.indexed_dataset,
                                                         data_prefix,
                                                         num_epochs,
                                                         max_num_samples,
                                                         self.max_seq_length,
                                                         short_seq_prob,
                                                         self.seed)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
46
47
48
49
50
51
52
53

        # Vocab stuff.
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.vocab['[CLS]']
        self.sep_id = tokenizer.vocab['[SEP]']
        self.mask_id = tokenizer.vocab['[MASK]']
        self.pad_id = tokenizer.vocab['[PAD]']
54
        exit()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
56


57
58
59
    def num_tokens(self):
        return self.tokenizer.vocab_size()

60

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
61
    def __len__(self):
62
        return self.samples_mapping.shape[0]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
63

64

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
65
    def __getitem__(self, idx):
66

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
68
69
70
71
        rng = random.Random(self.seed + idx)
        start_index, end_index, seq_length = self.samples_mapping[idx]
        sample = []
        for index in range(start_index, end_index):
            sample.append(self.indexed_dataset[index])
72
73
74
        for s in sample:
            if len(s) > 1000:
                print(self.tokenizer.convert_ids_to_tokens(s))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
75
        return build_training_sample(sample, seq_length,
76
                                     self.max_seq_length, # needed for padding
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
77
78
79
80
81
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
                                     self.masked_lm_prob, rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162


    def _get_indexed_dataset(self, data_prefix, data_impl, skip_warmup):
        start_time = time.time()
        print_rank_0("> Reading dataset index ...")
        indexed_dataset = make_indexed_dataset(data_prefix,
                                               data_impl,
                                               skip_warmup)
        print_rank_0("> Finished creating indexed dataset in {:4f} "
                     "seconds".format(time.time() - start_time))
        return indexed_dataset


    def _get_samples_mapping(self,
                             indexed_dataset,
                             data_prefix,
                             num_epochs,
                             max_num_samples,
                             max_seq_length,
                             short_seq_prob,
                             seed):
        if not num_epochs:
            if not max_num_samples:
                raise ValueError("Need to specify either max_num_samples "
                                 "or num_epochs")
            num_epochs = np.iinfo(np.int32).max - 1
        if not max_num_samples:
            max_num_samples = np.iinfo(np.int64).max - 1

        # Filename of the index mapping
        indexmap_filename = data_prefix
        indexmap_filename += '_indexmap'
        indexmap_filename += '_{}ep'.format(num_epochs)
        indexmap_filename += '_{}mns'.format(max_num_samples)
        indexmap_filename += '_{}msl'.format(max_seq_length)
        indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
        indexmap_filename += '_{}s'.format(seed)
        indexmap_filename += '.npy'

        # Build the indexed mapping if not exist.
        if torch.distributed.get_rank() == 0 and \
           not os.path.isfile(indexmap_filename):
            print('WARNING: could not find index map file {}, building '
                  'the indices on rank 0 ...'.format(indexmap_filename))
            # Make sure the types match the helpers input types.
            assert indexed_dataset.doc_idx.dtype == np.int64
            assert indexed_dataset.sizes.dtype == np.int32

            # Build samples mapping
            verbose = torch.distributed.get_rank()==0
            start_time = time.time()
            samples_mapping = helpers.build_mapping(
                indexed_dataset.doc_idx,
                indexed_dataset.sizes,
                num_epochs,
                max_num_samples,
                max_seq_length-3, # account for added tokens
                short_seq_prob,
                seed,
                verbose)
            np.save(indexmap_filename, samples_mapping, allow_pickle=True)
            # Make sure all the ranks have built the mapping
            print_rank_0('> elasped time to build and save samples mapping '
                         '(seconds): {:4f}'.format(
                             time.time() - start_time))
        torch.distributed.barrier()

        # Load indexed dataset.
        print_rank_0('> loading indexed mapping from {}'.format(
            indexmap_filename))
        start_time = time.time()
        samples_mapping = np.load(indexmap_filename, allow_pickle=True)
        print_rank_0('  loaded indexed file in {:3.3f} seconds'.format(
            time.time() - start_time))
        print_rank_0('  total number of samples: {}'.format(
            samples_mapping.shape[0]))

        return samples_mapping


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
163
'''
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
def get_target_seq_length(max_num_tokens, short_seq_prob, np_rng):
    """With probability `short_seq_prob` generate a smaller sequence lenght."""
    if np_rng.random() < short_seq_prob:
        return np_rng.randint(2, max_num_tokens + 1)
    return max_num_tokens


def build_training_samples_mapping(indexed_dataset, num_epochs, max_seq_length,
                                   short_seq_prob, seed):
    """Build a mapping to reconstruct training samples."""

    start_time = time.time()
    print('> building training samples mapping ...')

    # RNG:
    np_rng = np.random.RandomState(seed=seed)

    # List of start sentence index and end sentence index (end is exclusive)
    # to retrieve.
    samples = []

    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # Number of documents processed:
    total_docs = 0
    # Number of documents that are skipped:
    skipped_docs = 0
    # Number of empty documents:
    empty_docs = 0

    # For each epoch:
    for epoch in range(num_epochs):
        # For each document:
        for doc_index in range(indexed_dataset.num_docs):
            if epoch == 0:
                total_docs += 1

            # Document sentences are in [sent_index_first, sent_index_last).
            sent_index_first = indexed_dataset.doc_idx[doc_index]
            sent_index_last = indexed_dataset.doc_idx[doc_index+1]
205
            assert sent_index_last >= sent_index_first
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

            # Empty docs.
            if (sent_index_last - sent_index_first) == 0:
                if epoch == 0:
                    print('***WARNING*** document {} is empty'.format(
                        doc_index))
                    empty_docs += 1
                continue
            # Skip documents that only have one sentences.
            if (sent_index_last - sent_index_first) == 1:
                if epoch == 0:
                    print('***WARNING*** document {} has only one sentnece, '
                          'skipping ...'.format(doc_index))
                    skipped_docs += 1
                continue

            # Loop through sentences.
            sent_index = sent_index_first
            target_seq_length = get_target_seq_length(max_num_tokens,
225
                                                      short_seq_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
226
227
228
229
            size = 0
            while sent_index < sent_index_last:

                # Get the size.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
230
                assert indexed_dataset.sizes[sent_index] > 0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
231
232
233
234
235
236
237
                size += indexed_dataset.sizes[sent_index]
                sent_index += 1

                # If we have reached the target length.
                exceeded_target_size = (size >= target_seq_length)
                # If only one sentence is left in the document.
                only_one_sent_left = (sent_index == (sent_index_last - 1))
238
239
                # If we have at least two sentneces.
                have_more_than_one_sent = (sent_index - sent_index_first) > 1
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
240
241
                # If we have reached end of the document.
                reached_end_of_doc = (sent_index == sent_index_last)
242
243
                if (exceeded_target_size and not only_one_sent_left and
                    have_more_than_one_sent) or reached_end_of_doc:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
244
245
246
                    assert (sent_index - sent_index_first) > 1
                    assert size > 1
                    # Add the sample.
247
248
                    samples.append([sent_index_first, sent_index,
                                    target_seq_length])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
249
250
251
252
                    # Reset indices
                    sent_index_first = sent_index
                    target_seq_length = get_target_seq_length(max_num_tokens,
                                                              short_seq_prob,
253
                                                              np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
                    size = 0
                    num_sentences = 0

    # Convert to numpy array.
    samples_np = np.array(samples, dtype=np.int64)
    # Shuffle.
    np_rng.shuffle(samples_np)
    elapsed_time = time.time() - start_time

    # Print some stats:
    print('\n***************************** info *****************************')
    print('   elapsed time (sec) ..................... {}'.format(elapsed_time))
    print('   number of epochs ....................... {}'.format(num_epochs))
    print('   number of samples ...................... {}'.format(
        samples_np.shape[0]))
    print('   number of documents .................... {}'.format(total_docs))
    print('   number of empty documents .............. {}'.format(empty_docs))
    print('   number of documents with one sentence .. {}'.format(skipped_docs))
    print('****************************************************************\n')

    return samples_np
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
275
'''
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
276

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
277
278
# WILL BE REPLACED WITH JARED'S
class JaredDataset(object):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
279

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
280
281
282
283
284
    def __init__(self, doc_idx, sizes, sentences):
        self.doc_idx = doc_idx
        self.num_docs = len(self.doc_idx) - 1
        self.sizes = sizes
        self.sentences = sentences
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
286

    def __getitem__(self, idx):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
287
        return self.sentences[idx]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
288
289
290
291
292



if __name__ == '__main__':
    print('dataset ...')
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    from bert_tokenization import FullTokenizer
    import json
    import nltk
    nltk.download('punkt')

    def document_generator_provider(input_file):
        with open(input_file, 'r') as ifile:
            for document in ifile:
                data = json.loads(document)
                text = data['text']
                sentences = []
                for line in text.split('\n'):
                    if line != '\n':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
307
308
309
                        sent = nltk.tokenize.sent_tokenize(line)
                        if sent:
                            sentences.extend(sent)
310
311
                yield sentences

312
313
    input_file = 'test/samples_10000.json'
    vocab_file = 'test/vocab.txt'
314
315
316
317
318
319
320
321
322

    tokenizer = FullTokenizer(vocab_file, do_lower_case=True)
    document_generator = document_generator_provider(input_file)

    doc_idx = [0]
    sizes = []
    sentences_list = []

    for sentences in document_generator:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
323
        num_sent = 0
324
325
        for sentence in sentences:
            tokens = tokenizer.tokenize(sentence)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
326
327
328
329
330
331
332
333
334
335
336
337
            if tokens:
                ids = tokenizer.convert_tokens_to_ids(tokens)
                if len(ids) == 0:
                    print('****************')
                    print(sentence)
                    print(tokens)
                    print(ids)
                    print('****************')
                sizes.append(len(ids))
                sentences_list.append(ids)
                num_sent += 1
        doc_idx.append(num_sent)
338
339
340
    for i in range(1, len(doc_idx)):
        doc_idx[i] += doc_idx[i-1]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    #max_size = np.iinfo(np.int32).max // 32

    import time

    docs_np = np.array(doc_idx, dtype=np.uint32)
    sizes_np = np.array(sizes, dtype=np.uint16)

    start_time = time.time()
    max_seq_length = 512
    max_size = docs_np.shape[0]
    lens = np.full(max_size, max_seq_length-3, dtype=np.uint16)
    lens_rand = np.random.randint(low=2, high=(max_seq_length-2),
                                  size=max_size//10, dtype=np.uint16)
    lens_view = lens[:max_size//10]
    np.copyto(lens_view, lens_rand)
    np.random.shuffle(lens)
    print('num docs', max_size)
    print('lens time', time.time() - start_time)

    import helpers
    start_time = time.time()
    maps = helpers.build_mapping(docs_np, sizes_np, 10, 100, 509, 0.1, 1234)
    print('maps time', time.time() - start_time)
    print(maps)
    exit()

    start_time = time.time()
    max_size = 10 #np.iinfo(np.int32).max 32
    docs = np.arange(10, dtype=np.uint32)
    print(docs)

    a = example.doit(docs, max_size)
    print(type(a))
    print(a.shape)
    print(a)
    print(time.time() - start_time)
    exit()


    #start_time = time.time()
    count = doit(maps, docs_np, sizes_np, lens,docs_np.shape[0]-1, 10)
    print(count)
    maps = maps[:count]
    np.random.shuffle(maps)
    print(time.time() - start_time)


    exit()

390
391
392
    indexed_dataset = JaredDataset(doc_idx, sizes, sentences_list)
    dataset = AlbertDataSet(indexed_dataset=indexed_dataset,
                            tokenizer=tokenizer,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
393
                            num_epochs=10,
394
395
396
397
                            masked_lm_prob=0.15,
                            max_seq_length=512,
                            short_seq_prob=0.1,
                            seed=1234)