schedules.py 27.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

Jared Casper's avatar
Jared Casper committed
31
32
33
34
35
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
36
37
38
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
Jared Casper's avatar
Jared Casper committed
39
40
41
42
43
44
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

45
def free_output_tensor(output_tensors, deallocate_pipeline_outputs):
46
47
48
49
50
51
    '''Pseudo-free (i.e., set to scalar) the output tensor's '.data' field.

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
52
    if not deallocate_pipeline_outputs or output_tensors is None:
53
54
55
56
        return
    if isinstance(output_tensors, torch.Tensor):
        output_tensors = [output_tensors]
    for output_tensor in output_tensors:
57
58
        output_tensor.data = torch.cuda.FloatTensor([0])
        
59
def custom_backward(output, grad_output):
60
61
62
63
64
65
66
    '''Directly call C++ autograd engine.

    To make the 'free_output_tensor' (above) optimization work, the C++
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
    Variable._execution_engine.run_backward(
        tensors = (output,),
        grad_tensors = (grad_output,),
        keep_graph = False,
        create_graph = False,
        inputs = tuple(),
        allow_unreachable=True,
        accumulate_grad=True,
    )
Jared Casper's avatar
Jared Casper committed
93

94
def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
95
96
97
98
99
100
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
101
    args = get_args()
102
103
104
    timers = get_timers()

    timers('forward-compute').start()
105
106
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
107
108
109
110
111
112

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

113
    unwrapped_model.set_input_tensor(input_tensor)
114
    output_tensor, loss_func = forward_step_func(data_iterator, model)
115
    if mpu.is_pipeline_last_stage():
116
        output_tensor = loss_func(output_tensor)
117
118
119
120
121
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

122
123
124
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
125
126
127
128
129
130
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
131
132
133


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
134
135
136
137
138
139
140
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
141
142
143
144

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
145
146
147
148
149
150
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
151
152
153
154
155
156
157
158
159
160
161
162
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
163
164

    # Backward pass.
165
166
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
167
168
169
170
171
    if args.deallocate_pipeline_outputs:
        custom_backward(output_tensor[0], output_tensor_grad[0])
    else:
        torch.autograd.backward(output_tensor[0],
                                grad_tensors=output_tensor_grad[0])
172
173

    # Collect the grad of the input_tensor.
174
    input_tensor_grad = [None]
175
    if input_tensor is not None:
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
192
193
194
195
196
197

    timers('backward-compute').stop()

    return input_tensor_grad


198
199
200
201
202
203
204
205
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


206
207
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
208
209
210
211
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
212
213
214
    assert len(model) == 1
    model = model[0]

215
216
217
218
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

219
    losses_reduced = []
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
            output_tensor = forward_step(forward_step_func, data_iterator, model,
                                         input_tensor, losses_reduced)
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
    output_tensor = forward_step(forward_step_func, data_iterator, model,
                                 input_tensor, losses_reduced)
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
235
236
237
238
239
240

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
241
242
243
244
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
245
246
247
248
249
250
251
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
252
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
253

254
255
256
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

257
258
259
260
261
262
263
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
264
265
266
267
268
269
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
270
271
272
273
274
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
275
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
276
277
278
279
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
280
281
282
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

283
    def get_model_chunk_id(microbatch_id, forward):
284
        """Helper method to get the model chunk ID given the iteration number."""
285
286
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
287
        if not forward:
288
289
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
290

291
    def forward_step_helper(microbatch_id):
292
293
294
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
295
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
296
297
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

298
        # forward step
299
        if mpu.is_pipeline_first_stage():
300
301
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
302
303
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
304
305
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
306
307
308
309
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

310
311
312
313
314
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

315
316
        return output_tensor

317
    def backward_step_helper(microbatch_id):
318
319
320
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
321
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
322
323
324
325
326
327
328
329
330
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
331
332
333
334
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
335
336
337
338
339

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
340
    input_tensors[0].append(
341
        p2p_communication.recv_forward(tensor_shape, timers=timers))
342
343
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
344
345

        # Determine if tensor should be received from previous stage.
346
347
348
349
350
351
352
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
353
354

        # Don't send tensor downstream if on last stage.
355
356
        if mpu.is_pipeline_last_stage():
            output_tensor = None
357
358
359

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
360
361
362
363
364
365
366
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
367
                p2p_communication.send_forward_backward_recv_forward_backward(
368
369
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
370
                        tensor_shape=tensor_shape,
371
372
373
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
374
            input_tensor = \
375
                p2p_communication.send_forward_recv_forward(
376
377
378
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
379
        free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        input_tensors[next_forward_model_chunk_id].append(input_tensor)

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
418
419
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
420
421
422
423
424
425
426
427
428
429

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
430
431
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
432

433
434
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
435
436
437
438
439
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
440
            p2p_communication.send_forward_backward_recv_forward_backward(
441
442
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
443
                    tensor_shape=tensor_shape, timers=timers)
444
        free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
445

446
447
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
448
449
450
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
451
452
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
453

454
    # Run cooldown backward passes (flush out pipeline).
455
456
457
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
458
                p2p_communication.recv_backward(tensor_shape, timers=timers))
459
460
461
462
463
464
465
466
467
468
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
469
                p2p_communication.send_backward_recv_backward(
470
471
472
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
473
474
475
476

    return losses_reduced


477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
    if model_type == ModelType.encoder_and_decoder:
        if mpu.is_pipeline_stage_before_split(rank):
            # If next rank is after split, then need transpose for encoder_hidden_state.
            if mpu.is_pipeline_stage_before_split(rank+1):
                tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
            else:
                tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
        else:
            tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
    else:
        tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


571
572
573
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
574
575
576
577
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
578
    args = get_args()
579
580
    timers = get_timers()

581
582
583
584
585
586
587
588
589
590
591
592
593
594
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

595
596
597
598
599
600
601
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

602
603
604
605
606
607
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
608
609
610
611
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
612
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
613
614
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
615
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
616

617
618
619
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
620
            free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
621
622
623
624
625

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
626
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
627
628
629
630
631
632
633
634

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
635
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
636
637

            if not last_iteration:
638
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
639

640
        else:
641
            output_tensor_grad = \
642
643
644
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
645

646
647
648
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
649
            free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
650

651
652
653
654
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
655
656
657
658
659
660
661

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
662
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
663
            else:
664
                input_tensor = \
665
666
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
667
668
669
670
671
672
673

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

674
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
675
676
677
678
679

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

680
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
681
682

    return losses_reduced