optimizer.py 14.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
30
from megatron import print_rank_0

from .clip_grads import clip_grad_norm_fp32
mohammad's avatar
mohammad committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


48
49
50
51
52
53
54
55
56
57
58
59
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
    """Use multi-tensor-applier to copy values from one list to another."""
    if overflow_buf:
        overflow_buf.fill_(0)
    else:
        overflow_buf = torch.cuda.IntTensor([0])
    # Scaling with factor `1.0` is equivalent to copy.
    multi_tensor_applier(amp_C.multi_tensor_scale,
                         overflow_buf,
                         [this, that],
                         1.0)

mohammad's avatar
mohammad committed
60
61
62
63
64
65
66
67

class MegatronOptimizer(ABC):

    def __init__(self, optimizer):
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'

68
69
70
71
72
    def clip_grad_norm(self, clip_grad):
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
mohammad's avatar
mohammad committed
73
        clip_grad_norm_fp32(params, clip_grad)
74

mohammad's avatar
mohammad committed
75
76
77
78
79
80
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

    @abstractmethod
    def get_loss_scale(self):
81
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
82
83
84
85
86
87
88
89
90
91
        pass

    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

    @abstractmethod
    def step(self):
        pass

92
93
    @abstractmethod
    def reload_model_params(self):
94
95
96
97
98
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
99
100
        pass

mohammad's avatar
mohammad committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    @abstractmethod
    def state_dict(self):
        pass

    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



class FP16OptimizerWithFP16Params(MegatronOptimizer):

    def __init__(self, optimizer, grad_scaler, clip_grad):
        super(FP16OptimizerWithFP16Params, self).__init__(optimizer)

        self.grad_scaler = grad_scaler
        self.clip_grad = clip_grad

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
        self.found_inf = torch.cuda.FloatTensor([0.0])

        # Dummy tensor needed for apex multi-apply tensor.
        self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # ======================
148
        # main parameter stuff
mohammad's avatar
mohammad committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        # ======================

        # Three groups of parameters:
        #   fp16_groups: original fp16 parameters
        #   fp32_from_fp16_groups: fp32 copy of fp16 parameters
        #   fp32_from_fp32_groups: original fp32 parameters
        self.fp16_groups = []
        self.fp32_from_fp16_groups = []
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
            fp16_params_this_group = []
            fp32_params_this_group = []
            fp32_from_fp16_params_this_group = []
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

                    # fp16 params:
                    if param.type() == 'torch.cuda.HalfTensor':
                        fp16_params_this_group.append(param)
                        # Create a copy
172
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
173
                        # Store grads
174
                        main_param.requires_grad = True
mohammad's avatar
mohammad committed
175
                        # Copy tensor model parallel attributes.
176
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
177
                                                                  param)
178
                        if hasattr(param, 'shared'):
179
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
180
                        # Replace the optimizer params with the new fp32 copy.
181
182
183
                        param_group['params'][i] = main_param
                        fp32_from_fp16_params_this_group.append(main_param)
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
184
                        if param in self.optimizer.state:
185
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                                = self.optimizer.state.pop(param)

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
                        raise TypeError("Wrapped parameters must be either "
                                        "torch.cuda.FloatTensor or "
                                        "torch.cuda.HalfTensor. "
                                        "Received {}".format(param.type()))

            self.fp16_groups.append(fp16_params_this_group)
            self.fp32_from_fp16_groups.append(fp32_from_fp16_params_this_group)
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
                fp16_groups & fp32_from_fp32_groups."""
        for group in self.fp16_groups:
            _zero_grad_group_helper(group, set_to_none)
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


    def get_loss_scale(self):
        return self.grad_scaler.scale


221
    def _copy_model_grads_to_main_grads(self):
mohammad's avatar
mohammad committed
222
223
        # This only needs to be done for the fp16 group.
        model_grads = []
224
225
        main_grads = []
        for model_group, main_group in zip(self.fp16_groups,
mohammad's avatar
mohammad committed
226
                                           self.fp32_from_fp16_groups):
227
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
228
                if model_param.grad is not None:
229
230
                    if main_param.grad is None:
                        main_param.grad = torch.empty_like(main_param)
mohammad's avatar
mohammad committed
231
                    model_grads.append(model_param.grad.data)
232
233
234
                    main_grads.append(main_param.grad.data)
        _multi_tensor_copy_this_to_that(this=model_grads, that=main_grads,
                                        overflow_buf=self._dummy_overflow_buf)
mohammad's avatar
mohammad committed
235
236


237
238
    def _unscale_main_grads_and_check_for_nan(self):
        main_grads = []
mohammad's avatar
mohammad committed
239
        # fp32 params fromm fp16 ones.
240
241
242
243
        for main_group in self.fp32_from_fp16_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
244
        # Append fp32 parameters.
245
246
247
248
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
249
250
251
252
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
253
            main_grads, self.found_inf, self.grad_scaler.inv_scale)
mohammad's avatar
mohammad committed
254
255
256
257
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
mohammad's avatar
mohammad committed
258
259
260
261
262
263

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)
        return found_inf_flag


264
    def _get_model_and_main_params_data_fp16(self):
mohammad's avatar
mohammad committed
265
        model_data = []
266
267
        main_data = []
        for model_group, main_group in zip(self.fp16_groups,
mohammad's avatar
mohammad committed
268
                                           self.fp32_from_fp16_groups):
269
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
270
                model_data.append(model_param.data)
271
272
                main_data.append(main_param.data)
        return model_data, main_data
273
274


275
    def _copy_main_params_to_model_params(self):
276
        # Only needed for the fp16 params.
277
278
279
280
281
282
        model_data, main_data = self._get_model_and_main_params_data_fp16()
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
283
        # Only needed for the fp16 params.
284
285
286
        model_data, main_data = self._get_model_and_main_params_data_fp16()
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
287
288
289


    def reload_model_params(self):
290
        self._copy_model_params_to_main_params()
mohammad's avatar
mohammad committed
291

mohammad's avatar
mohammad committed
292
293
294
295
296
297

    @torch.no_grad()
    def step(self):

        timers = get_timers()

298
299
300
301
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
        self._copy_model_grads_to_main_grads()
        timers('optimizer-copy-to-main-grad').stop()
mohammad's avatar
mohammad committed
302
303
304

        # Unscale and check for inf/nan.
        timers('optimizer-unscale-and-check-inf').start()
305
        found_inf_flag = self._unscale_main_grads_and_check_for_nan()
mohammad's avatar
mohammad committed
306
        timers('optimizer-unscale-and-check-inf').stop()
mohammad's avatar
mohammad committed
307
308
309
310
311
312
313
314
315

        # We are done with scaling gradients
        # so we can update the loss scale.
        self.grad_scaler.update(found_inf_flag)

        # If we found inf/nan, skip the update.
        if found_inf_flag:
            return False

316
317
        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
318
        self.clip_grad_norm(self.clip_grad)
319
        timers('optimizer-clip-main-grad').stop()
mohammad's avatar
mohammad committed
320
321
322
323

        # Step the optimizer.
        self.optimizer.step()

324
325
326
327
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
        self._copy_main_params_to_model_params()
        timers('optimizer-copy-main-to-model-params').stop()
mohammad's avatar
mohammad committed
328

mohammad's avatar
mohammad committed
329
        # Successful update.
mohammad's avatar
mohammad committed
330
        return True
mohammad's avatar
mohammad committed
331
332


mohammad's avatar
mohammad committed
333
334
335
336
337
338
339
340
341
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_fp16_groups
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
            self.grad_scaler.load_state_dict(state_dict['grad_scaler'])

357
        # Copy data for the main params.
mohammad's avatar
mohammad committed
358
359
360
        fp32_from_fp16_params_key = 'fp32_from_fp16_params'
        if fp32_from_fp16_params_key not in state_dict:
            fp32_from_fp16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
361
362
        for current_group, saved_group in zip(
                self.fp32_from_fp16_groups,
mohammad's avatar
mohammad committed
363
                state_dict[fp32_from_fp16_params_key]):
mohammad's avatar
mohammad committed
364
365
366
367
368
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)



mohammad's avatar
mohammad committed
369
370
class FP32Optimizer(MegatronOptimizer):

mohammad's avatar
mohammad committed
371
    def __init__(self, optimizer, clip_grad):
mohammad's avatar
mohammad committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

        super(FP32Optimizer, self).__init__(optimizer)
        self.clip_grad = clip_grad
        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
392
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
393
394
395

        # Clip gradients.
        if self.clip_grad > 0.0:
396
            self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
397
398
399
400
401
402
403
404

        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
        return True


405
406
407
408
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
409
410
411
412
413
414
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)