training.py 20.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
25

import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_timers
from megatron import get_tensorboard_writer
29
from megatron import mpu
Mohammad's avatar
Mohammad committed
30
31
32
from megatron import print_rank_0
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
33
34
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
35
from megatron.initialize import initialize_megatron
36
37
38
39
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
from megatron.utils import check_adlr_autoresume_termination
40
from megatron.utils import make_data_loader
41
42
43
from megatron.utils import report_memory


44
45
def pretrain(train_valid_test_dataset_provider, model_provider,
             forward_step_func, extra_args_provider=None, args_defaults={}):
46
47
48
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
49
50
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
51
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
52
        4) train the modle using the forward_step_func.
53
54

    Arguments:
55
56
57
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
58
59
60
61
62
63
64
65
66
67
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
68
69
    """

70
    # Initalize and get arguments, timers, and Tensorboard writer.
Mohammad's avatar
Mohammad committed
71
72
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
73
    args = get_args()
Mohammad's avatar
Mohammad committed
74
    timers = get_timers()
75
76

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
77
78
79
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
80
81

    # Data stuff.
82
83
84
85
86
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
Mohammad's avatar
Mohammad committed
87
88
89

    # Print setup timing.
    print_rank_0('done with setups ...')
90
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
91
    print_rank_0('training ...')
92
93

    iteration = 0
94
    if args.do_train and args.train_iters > 0:
95
96
        iteration, _ = train(forward_step_func,
                             model, optimizer, lr_scheduler,
Neel Kant's avatar
Neel Kant committed
97
                             train_data_iterator, valid_data_iterator)
Mohammad's avatar
Mohammad committed
98

99
100
101
102

    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
103
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
104
                                   iteration, False)
105
106

    if args.save and iteration != 0:
107
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
108
109
110
111
112
113

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
114
                                   0, True)
115
116


Mohammad's avatar
Mohammad committed
117
def get_model(model_provider_func):
118
    """Build the model."""
Mohammad's avatar
Mohammad committed
119
    args = get_args()
120
121

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
122
    model = model_provider_func()
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training."""
    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
140
141
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
142
143
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
144
        model = LocalDDP(model)
145
146
        return model

147
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
148
                              'Exiting.'.format(args.DDP_impl))
149
150


Mohammad's avatar
Mohammad committed
151
def get_optimizer(model):
152
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
153
    args = get_args()
154
155

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
156
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
157
158
159
160
161
162
163
164
165
166
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

    # Use Adam.
Mohammad's avatar
Mohammad committed
167
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay)
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
                                       'min_scale':args.min_scale,
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
182
def get_learning_rate_scheduler(optimizer):
183
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
184
    args = get_args()
185
186
187
188
189
190
191

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
Mohammad's avatar
Mohammad committed
192
    init_step = 0
193
194
195
196
197
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
        start_lr=args.lr,
        warmup_iter=warmup_iter,
Mohammad's avatar
Mohammad committed
198
        total_iters=num_iters,
199
200
201
202
203
204
205
206
207
        decay_style=args.lr_decay_style,
        last_iter=init_step,
        min_lr=args.min_lr,
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
208
def setup_model_and_optimizer(model_provider_func):
209
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
210
    args = get_args()
211

Mohammad's avatar
Mohammad committed
212
213
214
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
215
216

    if args.load is not None:
217
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
218
219
220
221
222
223
    else:
        args.iteration = 0

    return model, optimizer, lr_scheduler


Mohammad's avatar
Mohammad committed
224
def backward_step(optimizer, model, loss):
225
    """Backward step."""
Mohammad's avatar
Mohammad committed
226
227
    args = get_args()
    timers = get_timers()
Neel Kant's avatar
Neel Kant committed
228
    print("start backward", flush=True)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

    # Backward pass.
    optimizer.zero_grad()
    if args.fp16:
        optimizer.backward(loss, update_master_grads=False)
    else:
        loss.backward()

    # All-reduce if needed.
    if args.DDP_impl == 'local':
        timers('allreduce').start()
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
        timers('allreduce').stop()
    # Update master gradients.
    if args.fp16:
        optimizer.update_master_grads()
    # Clipping gradients helps prevent the exploding gradient.
    if args.clip_grad > 0:
        if not args.fp16:
            mpu.clip_grad_norm(model.parameters(), args.clip_grad)
        else:
            optimizer.clip_master_grads(args.clip_grad)


Mohammad's avatar
Mohammad committed
254
255
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
256
    """Single training step."""
Mohammad's avatar
Mohammad committed
257
258
    args = get_args()
    timers = get_timers()
259
260
261

    # Forward model for one step.
    timers('forward').start()
Mohammad's avatar
Mohammad committed
262
    loss, loss_reduced = forward_step_func(data_iterator, model)
263
264
265
266
    timers('forward').stop()

    # Calculate gradients, reduce across processes, and clip.
    timers('backward').start()
Mohammad's avatar
Mohammad committed
267
    backward_step(optimizer, model, loss)
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    timers('backward').stop()

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

    return loss_reduced, skipped_iter


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
Mohammad's avatar
Mohammad committed
286
287
288
289
290
                 loss_scale, report_memory_flag):
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

    # Update losses.
    for key in loss_dict:
        total_loss_dict[key] = total_loss_dict.get(key, 0.) + loss_dict[key]

    # Logging.
    timers_to_log = []
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
    add_to_logging('forward')
    add_to_logging('backward')
    add_to_logging('allreduce')
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
        for key in total_loss_dict:
            avg = total_loss_dict[key].item() / args.log_interval
            log_string += ' {}: {:.6E} |'.format(key, avg)
            total_loss_dict[key] = 0.0
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
        print_rank_0(log_string)
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


345
def train(forward_step_func, model, optimizer, lr_scheduler,
346
          train_data_iterator, valid_data_iterator):
347
    """Train the model function."""
Mohammad's avatar
Mohammad committed
348
349
    args = get_args()
    timers = get_timers()
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration
    skipped_iters = 0

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
368
                                             lr_scheduler)
369
370
371
372
        skipped_iters += skipped_iter
        iteration += 1

        # Logging.
Mohammad's avatar
Mohammad committed
373
374
375
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
376
377
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
378
                                          iteration, loss_scale,
Mohammad's avatar
Mohammad committed
379
                                          report_memory_flag)
380
381

        # Autoresume
382
383
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
384
            check_adlr_autoresume_termination(iteration, model, optimizer,
385
                                              lr_scheduler)
386
387
388
389

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
390
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
391
392
393
394
395
396

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
397
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
398
                                       iteration, False)
399
400
401
402
403

        if args.exit_interval and iteration % args.exit_interval == 0:
            torch.distributed.barrier()
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
404
405
406
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
407
408
409
410

    return iteration, skipped_iters


Mohammad's avatar
Mohammad committed
411
def evaluate(forward_step_func, data_iterator, model, verbose=False):
412
    """Evaluation."""
Mohammad's avatar
Mohammad committed
413
    args = get_args()
414
415
416
417
418
419
420
421
422
423
424
425
426
427

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
            # Forward evaluation.
Mohammad's avatar
Mohammad committed
428
            _, loss_dict = forward_step_func(data_iterator, model)
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
            # Reduce across processes.
            for key in loss_dict:
                total_loss_dict[key] = total_loss_dict.get(key, 0.) + \
                                       loss_dict[key]
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
        total_loss_dict[key] /= args.eval_iters

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
444
                               iteration, verbose=False):
445
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
446
447
448
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)


466
467
468
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
469
    args = get_args()
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
        # Rank, size, and global batch size.
        data_parallel_size = mpu.get_data_parallel_world_size()
        global_batch_size = args.batch_size * data_parallel_size

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_iters * global_batch_size,
                                      eval_iters * global_batch_size,
                                      test_iters * global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
        train_dataloader = make_data_loader(train_ds)
        valid_dataloader = make_data_loader(valid_ds)
        test_dataloader = make_data_loader(test_ds)

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Mohammad's avatar
Mohammad committed
519
    # Shift the start iterations.
520
521
522
    if train_dataloader is not None:
        train_dataloader.batch_sampler.start_iter = args.iteration % \
                                                    len(train_dataloader)
Mohammad's avatar
Mohammad committed
523
        print_rank_0('setting training data start iteration to {}'.
524
525
                     format(train_dataloader.batch_sampler.start_iter))
    if valid_dataloader is not None:
Mohammad's avatar
Mohammad committed
526
527
        start_iter_val = (args.iteration // args.eval_interval) * \
                         args.eval_iters
528
529
        valid_dataloader.batch_sampler.start_iter = start_iter_val % \
                                                    len(valid_dataloader)
Mohammad's avatar
Mohammad committed
530
        print_rank_0('setting validation data start iteration to {}'.
531
                     format(valid_dataloader.batch_sampler.start_iter))
532

533
534
535
    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
536
537
538
    else:
        train_data_iterator = None

539
540
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
541
    else:
542
        valid_data_iterator = None
543

544
545
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
546
547
548
    else:
        test_data_iterator = None

549
    return train_data_iterator, valid_data_iterator, test_data_iterator