api.py 5.5 KB
Newer Older
mshoeybi's avatar
working  
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Inference API."""


import torch

mshoeybi's avatar
mshoeybi committed
21
from megatron import mpu
mshoeybi's avatar
working  
mshoeybi committed
22
from .communication import broadcast_float_list
23
24
25
from .generation import (
        generate_tokens_probs_and_return_on_first_stage,
        score_and_return_on_first_stage)
mshoeybi's avatar
mshoeybi committed
26
27
28
29
30
31
32
33
from .tokenization import (
    tokenize_prompts,
    detokenize_generations)

def generate_and_post_process(model,
                              prompts=None,
                              tokens_to_generate=0,
                              return_output_log_probs=False,
mshoeybi's avatar
mshoeybi committed
34
35
                              top_k_sampling=0,
                              top_p_sampling=0.0,
mshoeybi's avatar
mshoeybi committed
36
                              temperature=1.0,
mshoeybi's avatar
mshoeybi committed
37
                              add_BOS=False,
38
39
                              use_eod_token_for_early_termination=True,
                              stop_on_double_eol=False,
40
41
                              stop_on_eol=False,
                              random_seed=-1):
mshoeybi's avatar
mshoeybi committed
42
    """Run inference and post-process outputs, i.e., detokenize,
mshoeybi's avatar
mshoeybi committed
43
    move to cpu and convert to list."""
mshoeybi's avatar
mshoeybi committed
44
45

    # Main inference.
46
    tokens, lengths, output_log_probs = generate(
mshoeybi's avatar
mshoeybi committed
47
48
49
50
        model,
        prompts=prompts,
        tokens_to_generate=tokens_to_generate,
        return_output_log_probs=return_output_log_probs,
mshoeybi's avatar
mshoeybi committed
51
52
        top_k_sampling=top_k_sampling,
        top_p_sampling=top_p_sampling,
mshoeybi's avatar
mshoeybi committed
53
        temperature=temperature,
mshoeybi's avatar
mshoeybi committed
54
        add_BOS=add_BOS,
55
56
        use_eod_token_for_early_termination=use_eod_token_for_early_termination,
        stop_on_double_eol=stop_on_double_eol,
57
58
        stop_on_eol=stop_on_eol,
        random_seed=random_seed)
mshoeybi's avatar
mshoeybi committed
59
60
61
62
63
64
65
66

    # Only post-process on first stage.
    if mpu.is_pipeline_first_stage():
        tokens, prompts_plus_generations, prompts_plus_generations_segments = \
            detokenize_generations(tokens, lengths, True)

        if return_output_log_probs:
            output_log_probs = output_log_probs.cpu().numpy().tolist()
67
68
            for i, (prob, seg) in enumerate(zip(output_log_probs, prompts_plus_generations_segments)):
                output_log_probs[i] = prob[:len(seg)-1]
mshoeybi's avatar
mshoeybi committed
69
70

        return prompts_plus_generations, prompts_plus_generations_segments, \
71
            output_log_probs, tokens
mshoeybi's avatar
mshoeybi committed
72
73

    return None
mshoeybi's avatar
working  
mshoeybi committed
74
75
76
77
78

def generate(model,
             prompts=None,
             tokens_to_generate=0,
             return_output_log_probs=False,
mshoeybi's avatar
mshoeybi committed
79
80
             top_k_sampling=0,
             top_p_sampling=0.0,
mshoeybi's avatar
mshoeybi committed
81
             temperature=1.0,
mshoeybi's avatar
mshoeybi committed
82
             add_BOS=False,
83
84
             use_eod_token_for_early_termination=True,
             stop_on_double_eol=False,
85
86
             stop_on_eol=False,
             random_seed=-1):
mshoeybi's avatar
mshoeybi committed
87
88
89
90
91
92
93
    """Given prompts and input parameters, run inference and return:
       tokens: prompts plus the generated tokens.
       lengths: length of the prompt + generations. Note that we can
           discard tokens in the tokens tensor that are after the
           corresponding length.
       output_log_probs: log probs of the tokens.
    """
mshoeybi's avatar
working  
mshoeybi committed
94
95

    # Make sure input params are avaialble to all ranks.
mshoeybi's avatar
mshoeybi committed
96
    values = [tokens_to_generate,
97
              return_output_log_probs,
rprenger's avatar
rprenger committed
98
              top_k_sampling, top_p_sampling,
99
100
              temperature, add_BOS, use_eod_token_for_early_termination,
              stop_on_double_eol,
101
102
103
              stop_on_eol,
              random_seed]
    values_float_tensor = broadcast_float_list(10, float_list=values)
mshoeybi's avatar
working  
mshoeybi committed
104
105
    tokens_to_generate = int(values_float_tensor[0].item())
    return_output_log_probs = bool(values_float_tensor[1].item())
mshoeybi's avatar
mshoeybi committed
106
107
108
109
110
    top_k_sampling = int(values_float_tensor[2].item())
    top_p_sampling = values_float_tensor[3].item()
    temperature = values_float_tensor[4].item()
    add_BOS = bool(values_float_tensor[5].item())
    use_eod_token_for_early_termination = bool(values_float_tensor[6].item())
111
112
    stop_on_double_eol = bool(values_float_tensor[7].item())
    stop_on_eol = bool(values_float_tensor[8].item())
113
114
115
116
    random_seed = int(values_float_tensor[9].item())

    if random_seed != -1:
        torch.random.manual_seed(random_seed)
mshoeybi's avatar
working  
mshoeybi committed
117
118
119
120
121

    # Tokenize prompts and get the batch.
    # Note that these tensors are broadcaseted to all ranks.
    if torch.distributed.get_rank() == 0:
        assert prompts is not None
rprenger's avatar
rprenger committed
122
    
mshoeybi's avatar
working  
mshoeybi committed
123
    context_tokens_tensor, context_length_tensor = tokenize_prompts(
mshoeybi's avatar
mshoeybi committed
124
        prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
mshoeybi's avatar
working  
mshoeybi committed
125

126
    if tokens_to_generate == 0:
127
128
        return score_and_return_on_first_stage(
            model, context_tokens_tensor, context_length_tensor)
129
    
mshoeybi's avatar
working  
mshoeybi committed
130
131
132
133
134
    # Main inference function.
    # Note that the outputs are available on the first stage.
    return generate_tokens_probs_and_return_on_first_stage(
        model, context_tokens_tensor, context_length_tensor,
        return_output_log_probs=return_output_log_probs,
mshoeybi's avatar
mshoeybi committed
135
136
        top_k=top_k_sampling,
        top_p=top_p_sampling,
mshoeybi's avatar
mshoeybi committed
137
        temperature=temperature,
138
139
140
        use_eod_token_for_early_termination=use_eod_token_for_early_termination,
        stop_on_double_eol=stop_on_double_eol,
        stop_on_eol=stop_on_eol)