api.py 4.63 KB
Newer Older
mshoeybi's avatar
working  
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Inference API."""


import torch

mshoeybi's avatar
mshoeybi committed
21
from megatron import mpu
mshoeybi's avatar
working  
mshoeybi committed
22
23
from .communication import broadcast_float_list
from .generation import generate_tokens_probs_and_return_on_first_stage
mshoeybi's avatar
mshoeybi committed
24
25
26
27
28
from .tokenization import (
    tokenize_prompts,
    detokenize_generations)


mshoeybi's avatar
mshoeybi committed
29

mshoeybi's avatar
mshoeybi committed
30
31
32
33
def generate_and_post_process(model,
                              prompts=None,
                              tokens_to_generate=0,
                              return_output_log_probs=False,
mshoeybi's avatar
mshoeybi committed
34
35
36
                              greedy_sampling=False,
                              top_k_sampling=0,
                              top_p_sampling=0.0,
mshoeybi's avatar
mshoeybi committed
37
                              temperature=1.0,
mshoeybi's avatar
mshoeybi committed
38
39
                              add_BOS=False,
                              use_eod_token_for_early_termination=True):
mshoeybi's avatar
mshoeybi committed
40
    """Run inference and post-process outputs, i.e., detokenize,
mshoeybi's avatar
mshoeybi committed
41
    move to cpu and convert to list."""
mshoeybi's avatar
mshoeybi committed
42
43

    # Main inference.
mshoeybi's avatar
mshoeybi committed
44
    tokens, lengths, output_log_probs = generate(
mshoeybi's avatar
mshoeybi committed
45
46
47
48
        model,
        prompts=prompts,
        tokens_to_generate=tokens_to_generate,
        return_output_log_probs=return_output_log_probs,
mshoeybi's avatar
mshoeybi committed
49
50
51
        greedy_sampling=greedy_sampling,
        top_k_sampling=top_k_sampling,
        top_p_sampling=top_p_sampling,
mshoeybi's avatar
mshoeybi committed
52
        temperature=temperature,
mshoeybi's avatar
mshoeybi committed
53
54
        add_BOS=add_BOS,
        use_eod_token_for_early_termination=use_eod_token_for_early_termination)
mshoeybi's avatar
mshoeybi committed
55
56
57
58
59
60
61
62
63
64
65

    # Only post-process on first stage.
    if mpu.is_pipeline_first_stage():

        tokens, prompts_plus_generations, prompts_plus_generations_segments = \
            detokenize_generations(tokens, lengths, True)

        if return_output_log_probs:
            output_log_probs = output_log_probs.cpu().numpy().tolist()

        return prompts_plus_generations, prompts_plus_generations_segments, \
mshoeybi's avatar
mshoeybi committed
66
            output_log_probs, tokens
mshoeybi's avatar
mshoeybi committed
67
68

    return None
mshoeybi's avatar
working  
mshoeybi committed
69
70


mshoeybi's avatar
mshoeybi committed
71

mshoeybi's avatar
working  
mshoeybi committed
72
73
74
75
def generate(model,
             prompts=None,
             tokens_to_generate=0,
             return_output_log_probs=False,
mshoeybi's avatar
mshoeybi committed
76
77
78
             greedy_sampling=False,
             top_k_sampling=0,
             top_p_sampling=0.0,
mshoeybi's avatar
mshoeybi committed
79
             temperature=1.0,
mshoeybi's avatar
mshoeybi committed
80
81
82
83
84
85
86
87
88
             add_BOS=False,
             use_eod_token_for_early_termination=True):
    """Given prompts and input parameters, run inference and return:
       tokens: prompts plus the generated tokens.
       lengths: length of the prompt + generations. Note that we can
           discard tokens in the tokens tensor that are after the
           corresponding length.
       output_log_probs: log probs of the tokens.
    """
mshoeybi's avatar
working  
mshoeybi committed
89
90

    # Make sure input params are avaialble to all ranks.
mshoeybi's avatar
mshoeybi committed
91
    values = [tokens_to_generate, return_output_log_probs,
mshoeybi's avatar
mshoeybi committed
92
93
              greedy_sampling, top_k_sampling, top_p_sampling,
              temperature, add_BOS, use_eod_token_for_early_termination]
mshoeybi's avatar
mshoeybi committed
94
    values_float_tensor = broadcast_float_list(8, float_list=values)
mshoeybi's avatar
working  
mshoeybi committed
95
96
    tokens_to_generate = int(values_float_tensor[0].item())
    return_output_log_probs = bool(values_float_tensor[1].item())
mshoeybi's avatar
mshoeybi committed
97
98
99
100
101
102
    greedy_sampling = bool(values_float_tensor[2].item())
    top_k_sampling = int(values_float_tensor[3].item())
    top_p_sampling = values_float_tensor[4].item()
    temperature = values_float_tensor[5].item()
    add_BOS = bool(values_float_tensor[6].item())
    use_eod_token_for_early_termination = bool(values_float_tensor[7].item())
mshoeybi's avatar
working  
mshoeybi committed
103
104
105
106
107

    # Tokenize prompts and get the batch.
    # Note that these tensors are broadcaseted to all ranks.
    if torch.distributed.get_rank() == 0:
        assert prompts is not None
mshoeybi's avatar
mshoeybi committed
108
        assert tokens_to_generate > 0
mshoeybi's avatar
working  
mshoeybi committed
109
    context_tokens_tensor, context_length_tensor = tokenize_prompts(
mshoeybi's avatar
mshoeybi committed
110
        prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
mshoeybi's avatar
working  
mshoeybi committed
111
112
113
114
115
116

    # Main inference function.
    # Note that the outputs are available on the first stage.
    return generate_tokens_probs_and_return_on_first_stage(
        model, context_tokens_tensor, context_length_tensor,
        return_output_log_probs=return_output_log_probs,
mshoeybi's avatar
mshoeybi committed
117
118
119
        greedy=greedy_sampling, top_k=top_k_sampling, top_p=top_p_sampling,
        temperature=temperature,
        use_eod_token_for_early_termination=use_eod_token_for_early_termination)