api.py 5.31 KB
Newer Older
mshoeybi's avatar
working  
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Inference API."""


import torch

mshoeybi's avatar
mshoeybi committed
21
from megatron import mpu
mshoeybi's avatar
working  
mshoeybi committed
22
23
from .communication import broadcast_float_list
from .generation import generate_tokens_probs_and_return_on_first_stage
mshoeybi's avatar
mshoeybi committed
24
25
26
27
28
from .tokenization import (
    tokenize_prompts,
    detokenize_generations)


mshoeybi's avatar
mshoeybi committed
29

mshoeybi's avatar
mshoeybi committed
30
31
32
33
34
def generate_and_post_process(model,
                              prompts=None,
                              tokens_to_generate=0,
                              return_output_log_probs=False,
                              return_all_log_probs=False,
mshoeybi's avatar
mshoeybi committed
35
36
37
                              greedy_sampling=False,
                              top_k_sampling=0,
                              top_p_sampling=0.0,
mshoeybi's avatar
mshoeybi committed
38
                              temperature=1.0,
mshoeybi's avatar
mshoeybi committed
39
                              add_BOS=False,
40
41
                              use_eod_token_for_early_termination=True,
                              just_score=False):
mshoeybi's avatar
mshoeybi committed
42
    """Run inference and post-process outputs, i.e., detokenize,
mshoeybi's avatar
mshoeybi committed
43
    move to cpu and convert to list."""
mshoeybi's avatar
mshoeybi committed
44
45
46
47
48
49
50
51

    # Main inference.
    tokens, lengths, output_log_probs, all_log_probs = generate(
        model,
        prompts=prompts,
        tokens_to_generate=tokens_to_generate,
        return_output_log_probs=return_output_log_probs,
        return_all_log_probs=return_all_log_probs,
mshoeybi's avatar
mshoeybi committed
52
53
54
        greedy_sampling=greedy_sampling,
        top_k_sampling=top_k_sampling,
        top_p_sampling=top_p_sampling,
mshoeybi's avatar
mshoeybi committed
55
        temperature=temperature,
mshoeybi's avatar
mshoeybi committed
56
        add_BOS=add_BOS,
57
58
        use_eod_token_for_early_termination=use_eod_token_for_early_termination,
        just_score=just_score)
mshoeybi's avatar
mshoeybi committed
59
60
61
62
63
64
65
66
67
68

    # Only post-process on first stage.
    if mpu.is_pipeline_first_stage():

        tokens, prompts_plus_generations, prompts_plus_generations_segments = \
            detokenize_generations(tokens, lengths, True)

        if return_output_log_probs:
            output_log_probs = output_log_probs.cpu().numpy().tolist()
        if return_all_log_probs:
mshoeybi's avatar
mshoeybi committed
69
            all_log_probs = all_log_probs.cpu().numpy().tolist()
mshoeybi's avatar
mshoeybi committed
70
71
72
73
74

        return prompts_plus_generations, prompts_plus_generations_segments, \
            output_log_probs, all_log_probs, tokens

    return None
mshoeybi's avatar
working  
mshoeybi committed
75
76


mshoeybi's avatar
mshoeybi committed
77

mshoeybi's avatar
working  
mshoeybi committed
78
79
80
81
82
def generate(model,
             prompts=None,
             tokens_to_generate=0,
             return_output_log_probs=False,
             return_all_log_probs=False,
mshoeybi's avatar
mshoeybi committed
83
84
85
             greedy_sampling=False,
             top_k_sampling=0,
             top_p_sampling=0.0,
mshoeybi's avatar
mshoeybi committed
86
             temperature=1.0,
mshoeybi's avatar
mshoeybi committed
87
             add_BOS=False,
88
89
             use_eod_token_for_early_termination=True,
             just_score=False):
mshoeybi's avatar
mshoeybi committed
90
91
92
93
94
95
96
97
    """Given prompts and input parameters, run inference and return:
       tokens: prompts plus the generated tokens.
       lengths: length of the prompt + generations. Note that we can
           discard tokens in the tokens tensor that are after the
           corresponding length.
       output_log_probs: log probs of the tokens.
       all_log_probs: full log probs for all of tokens.
    """
mshoeybi's avatar
working  
mshoeybi committed
98
99

    # Make sure input params are avaialble to all ranks.
mshoeybi's avatar
mshoeybi committed
100
101
102
    values = [tokens_to_generate,
              return_output_log_probs, return_all_log_probs,
              greedy_sampling, top_k_sampling, top_p_sampling,
103
104
              temperature, add_BOS, use_eod_token_for_early_termination, just_score]
    values_float_tensor = broadcast_float_list(10, float_list=values)
mshoeybi's avatar
working  
mshoeybi committed
105
106
107
    tokens_to_generate = int(values_float_tensor[0].item())
    return_output_log_probs = bool(values_float_tensor[1].item())
    return_all_log_probs = bool(values_float_tensor[2].item())
mshoeybi's avatar
mshoeybi committed
108
109
110
111
112
113
    greedy_sampling = bool(values_float_tensor[3].item())
    top_k_sampling = int(values_float_tensor[4].item())
    top_p_sampling = values_float_tensor[5].item()
    temperature = values_float_tensor[6].item()
    add_BOS = bool(values_float_tensor[7].item())
    use_eod_token_for_early_termination = bool(values_float_tensor[8].item())
114
    just_score = bool(values_float_tensor[9].item())
mshoeybi's avatar
working  
mshoeybi committed
115
116
117
118
119

    # Tokenize prompts and get the batch.
    # Note that these tensors are broadcaseted to all ranks.
    if torch.distributed.get_rank() == 0:
        assert prompts is not None
120
        #assert tokens_to_generate > 0
mshoeybi's avatar
working  
mshoeybi committed
121
    context_tokens_tensor, context_length_tensor = tokenize_prompts(
mshoeybi's avatar
mshoeybi committed
122
        prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS)
mshoeybi's avatar
working  
mshoeybi committed
123
124
125
126
127
128
129

    # Main inference function.
    # Note that the outputs are available on the first stage.
    return generate_tokens_probs_and_return_on_first_stage(
        model, context_tokens_tensor, context_length_tensor,
        return_output_log_probs=return_output_log_probs,
        return_all_log_probs=return_all_log_probs,
mshoeybi's avatar
mshoeybi committed
130
131
        greedy=greedy_sampling, top_k=top_k_sampling, top_p=top_p_sampling,
        temperature=temperature,
132
133
        use_eod_token_for_early_termination=use_eod_token_for_early_termination,
        just_score=just_score)