finetune.py 2.68 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""GLUE finetuning/evaluation."""

xingjinliang's avatar
xingjinliang committed
5
6
7
8
from megatron.training import get_args
from megatron.training import print_rank_0
from megatron.training import get_tokenizer
from megatron.legacy.model.classification import Classification
9
10
from tasks.eval_utils import accuracy_func_provider
from tasks.finetune_utils import finetune
xingjinliang's avatar
xingjinliang committed
11
from megatron.training.arguments import core_transformer_config_from_args
12
13


Mohammad's avatar
Mohammad committed
14
def glue_classification(num_classes, Dataset,
15
16
                        name_from_datapath_func):

Mohammad's avatar
Mohammad committed
17
    def train_valid_datasets_provider():
18
        """Build train and validation dataset."""
Mohammad's avatar
Mohammad committed
19
20
21
        args = get_args()
        tokenizer = get_tokenizer()

22
        train_dataset = Dataset('training', args.train_data,
Mohammad's avatar
Mohammad committed
23
                                tokenizer, args.seq_length)
24
        valid_dataset = Dataset('validation', args.valid_data,
Mohammad's avatar
Mohammad committed
25
26
                                tokenizer, args.seq_length)

27
28
        return train_dataset, valid_dataset

Jared Casper's avatar
Jared Casper committed
29
    def model_provider(pre_process=True, post_process=True):
30
        """Build the model."""
Mohammad's avatar
Mohammad committed
31
        args = get_args()
liangjing's avatar
v1  
liangjing committed
32
        config = core_transformer_config_from_args()
Mohammad's avatar
Mohammad committed
33

34
35
        print_rank_0('building classification model for {} ...'.format(
            args.task))
liangjing's avatar
v1  
liangjing committed
36
        model = Classification(config=config, num_classes=num_classes, num_tokentypes=2,
Jared Casper's avatar
Jared Casper committed
37
                               pre_process=pre_process, post_process=post_process)
Mohammad's avatar
Mohammad committed
38

39
        return model
40

Mohammad's avatar
Mohammad committed
41
    def metrics_func_provider():
42
        """Privde metrics callback function."""
Mohammad's avatar
Mohammad committed
43
44
45
46
        def single_dataset_provider(datapath):
            args = get_args()
            tokenizer = get_tokenizer()

47
            name = name_from_datapath_func(datapath)
Mohammad's avatar
Mohammad committed
48
49
            return Dataset(name, [datapath], tokenizer, args.seq_length)
        return accuracy_func_provider(single_dataset_provider)
50
51

    """Finetune/evaluate."""
Mohammad's avatar
Mohammad committed
52
    finetune(train_valid_datasets_provider, model_provider,
53
54
55
             end_of_epoch_callback_provider=metrics_func_provider)


Mohammad's avatar
Mohammad committed
56
57
def main():
    args = get_args()
58
59
60
61

    if args.task == 'MNLI':

        num_classes = 3
Mohammad's avatar
Mohammad committed
62
        from tasks.glue.mnli import MNLIDataset as Dataset
Neel Kant's avatar
Neel Kant committed
63

64
65
66
67
68
69
70
        def name_from_datapath(datapath):
            return datapath.split('MNLI')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    elif args.task == 'QQP':

        num_classes = 2
Mohammad's avatar
Mohammad committed
71
        from tasks.glue.qqp import QQPDataset as Dataset
Neel Kant's avatar
Neel Kant committed
72

73
74
75
76
77
78
79
80
        def name_from_datapath(datapath):
            return datapath.split('QQP')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    else:
        raise NotImplementedError('GLUE task {} is not implemented.'.format(
            args.task))

Mohammad's avatar
Mohammad committed
81
    glue_classification(num_classes, Dataset, name_from_datapath)