finetune.py 2.51 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""GLUE finetuning/evaluation."""

Neel Kant's avatar
Neel Kant committed
5
6
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
7
from megatron import get_tokenizer
Jared Casper's avatar
Jared Casper committed
8
from megatron.model.classification import Classification
9
10
11
12
from tasks.eval_utils import accuracy_func_provider
from tasks.finetune_utils import finetune


Mohammad's avatar
Mohammad committed
13
def glue_classification(num_classes, Dataset,
14
15
                        name_from_datapath_func):

Mohammad's avatar
Mohammad committed
16
    def train_valid_datasets_provider():
17
        """Build train and validation dataset."""
Mohammad's avatar
Mohammad committed
18
19
20
        args = get_args()
        tokenizer = get_tokenizer()

21
        train_dataset = Dataset('training', args.train_data,
Mohammad's avatar
Mohammad committed
22
                                tokenizer, args.seq_length)
23
        valid_dataset = Dataset('validation', args.valid_data,
Mohammad's avatar
Mohammad committed
24
25
                                tokenizer, args.seq_length)

26
27
        return train_dataset, valid_dataset

Jared Casper's avatar
Jared Casper committed
28
    def model_provider(pre_process=True, post_process=True):
29
        """Build the model."""
Mohammad's avatar
Mohammad committed
30
31
        args = get_args()

32
33
        print_rank_0('building classification model for {} ...'.format(
            args.task))
Jared Casper's avatar
Jared Casper committed
34
35
        model = Classification(num_classes=num_classes, num_tokentypes=2,
                               pre_process=pre_process, post_process=post_process)
Mohammad's avatar
Mohammad committed
36

37
        return model
38

Mohammad's avatar
Mohammad committed
39
    def metrics_func_provider():
40
        """Privde metrics callback function."""
Mohammad's avatar
Mohammad committed
41
42
43
44
        def single_dataset_provider(datapath):
            args = get_args()
            tokenizer = get_tokenizer()

45
            name = name_from_datapath_func(datapath)
Mohammad's avatar
Mohammad committed
46
47
            return Dataset(name, [datapath], tokenizer, args.seq_length)
        return accuracy_func_provider(single_dataset_provider)
48
49

    """Finetune/evaluate."""
Mohammad's avatar
Mohammad committed
50
    finetune(train_valid_datasets_provider, model_provider,
51
52
53
             end_of_epoch_callback_provider=metrics_func_provider)


Mohammad's avatar
Mohammad committed
54
55
def main():
    args = get_args()
56
57
58
59

    if args.task == 'MNLI':

        num_classes = 3
Mohammad's avatar
Mohammad committed
60
        from tasks.glue.mnli import MNLIDataset as Dataset
Neel Kant's avatar
Neel Kant committed
61

62
63
64
65
66
67
68
        def name_from_datapath(datapath):
            return datapath.split('MNLI')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    elif args.task == 'QQP':

        num_classes = 2
Mohammad's avatar
Mohammad committed
69
        from tasks.glue.qqp import QQPDataset as Dataset
Neel Kant's avatar
Neel Kant committed
70

71
72
73
74
75
76
77
78
        def name_from_datapath(datapath):
            return datapath.split('QQP')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    else:
        raise NotImplementedError('GLUE task {} is not implemented.'.format(
            args.task))

Mohammad's avatar
Mohammad committed
79
    glue_classification(num_classes, Dataset, name_from_datapath)