# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """GLUE finetuning/evaluation.""" from megatron.training import get_args from megatron.training import print_rank_0 from megatron.training import get_tokenizer from megatron.legacy.model.classification import Classification from tasks.eval_utils import accuracy_func_provider from tasks.finetune_utils import finetune from megatron.training.arguments import core_transformer_config_from_args def glue_classification(num_classes, Dataset, name_from_datapath_func): def train_valid_datasets_provider(): """Build train and validation dataset.""" args = get_args() tokenizer = get_tokenizer() train_dataset = Dataset('training', args.train_data, tokenizer, args.seq_length) valid_dataset = Dataset('validation', args.valid_data, tokenizer, args.seq_length) return train_dataset, valid_dataset def model_provider(pre_process=True, post_process=True): """Build the model.""" args = get_args() config = core_transformer_config_from_args() print_rank_0('building classification model for {} ...'.format( args.task)) model = Classification(config=config, num_classes=num_classes, num_tokentypes=2, pre_process=pre_process, post_process=post_process) return model def metrics_func_provider(): """Privde metrics callback function.""" def single_dataset_provider(datapath): args = get_args() tokenizer = get_tokenizer() name = name_from_datapath_func(datapath) return Dataset(name, [datapath], tokenizer, args.seq_length) return accuracy_func_provider(single_dataset_provider) """Finetune/evaluate.""" finetune(train_valid_datasets_provider, model_provider, end_of_epoch_callback_provider=metrics_func_provider) def main(): args = get_args() if args.task == 'MNLI': num_classes = 3 from tasks.glue.mnli import MNLIDataset as Dataset def name_from_datapath(datapath): return datapath.split('MNLI')[-1].strip( '.tsv').strip('/').replace('_', '-') elif args.task == 'QQP': num_classes = 2 from tasks.glue.qqp import QQPDataset as Dataset def name_from_datapath(datapath): return datapath.split('QQP')[-1].strip( '.tsv').strip('/').replace('_', '-') else: raise NotImplementedError('GLUE task {} is not implemented.'.format( args.task)) glue_classification(num_classes, Dataset, name_from_datapath)