"magic_pdf/vscode:/vscode.git/clone" did not exist on "f6af67eb112793a5f9192adb544fa783c0ccf8f8"
README.md 38.4 KB
Newer Older
1
Megatron ([1](https://arxiv.org/pdf/1909.08053.pdf) and [2](https://arxiv.org/pdf/2104.04473.pdf)) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor and pipeline), and multi-node pre-training oftransformer based models such as [GPT](https://arxiv.org/abs/2005.14165), [BERT](https://arxiv.org/pdf/1810.04805.pdf), and [T5](https://arxiv.org/abs/1910.10683) using mixed precision.
Mohammad's avatar
Mohammad committed
2

3
4
5
6
7
8
9
10
Below are some of the projects where we have directly used Megatron:
* [BERT and GPT Studies Using Megatron](https://arxiv.org/pdf/1909.08053.pdf)
* [BioMegatron: Larger Biomedical Domain Language Model](https://www.aclweb.org/anthology/2020.emnlp-main.379.pdf)
* [End-to-End Training of Neural Retrievers for Open-Domain Question Answering](https://arxiv.org/abs/2101.00408)
* [Large Scale Multi-Actor Generative Dialog Modeling](https://www.aclweb.org/anthology/2020.acl-main.8.pdf)
* [Local Knowledge Powered Conversational Agents](https://arxiv.org/abs/2010.10150)
* [MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models](https://www.aclweb.org/anthology/2020.emnlp-main.226.pdf)
* [RACE Reading Comprehension Dataset Leaderboard](http://www.qizhexie.com/data/RACE_leaderboard.html)
mohammad's avatar
mohammad committed
11
* [Scaling Language Model Training to a Trillion Parameters Using Megatron](https://arxiv.org/pdf/2104.04473.pdf)
12
* [Training Question Answering Models From Synthetic Data](https://www.aclweb.org/anthology/2020.emnlp-main.468.pdf)
Mohammad's avatar
Mohammad committed
13

Jared Casper's avatar
Jared Casper committed
14
15
Megatron is also used in [NeMo Megatron](https://developer.nvidia.com/nvidia-nemo#nemo-megatron), a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters.

16
Our codebase is capable of efficiently training very large (hundreds of billions of parameters) language models with both model and data parallelism. To demonstrate how the code scales with multiple GPUs and model sizes, we consider GPT models from 1 billion all the way to 1 trillion parameters. All models use a vocabulary size of 51,200 and a sequence length of 2048. We vary hidden size, number of attention heads, and number of layers to arrive at a specifc model size. As the model size increases, we also modestly increase the batch size. We leverage [NVIDIA's Selene supercomputer](https://www.top500.org/system/179842/) to perform scaling studies and use up to 3072 [A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for the largest model. The table below shows the model configurations along with the achieved FLOPs (both per GPU and aggregate over all GPUs). Note that these results are from benchmark runs and these models were not trained to convergence; however, the FLOPs are measured for end-to-end training, i.e., includes all operations including data loading, optimization, and even logging.
17

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
18
![Cases](images/cases_april2021.png)
19

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
20
All the cases from 1 billion to 1 trillion parameters achieve more than 43% half precision utilization, which is high for an end-to-end application. We observe that initially the utilization remains constant but as hidden size increases for larger models, utilization starts increasing and reaches 52% for the largest model. We also note that achieved aggregate petaFLOPs across all GPUs increases almost linearly with number of GPUs, demonstrating good weak scaling.
21
22


Mohammad's avatar
Mohammad committed
23
# Contents
Jared Casper's avatar
TOC fix  
Jared Casper committed
24
25
26
27
28
29
30
31
   * [Contents](#contents)
   * [Setup](#setup)
      * [Downloading Checkpoints](#downloading-checkpoints)
   * [Usage](#usage)
   * [Training](#training)
      * [Data Preprocessing](#data-preprocessing)
      * [BERT Pretraining](#bert-pretraining)
      * [GPT Pretraining](#gpt-pretraining)
32
33
34
      * [GPT Pretraining](#gpt-pretraining)
      * [T5 Pretraining](#t5-pretraining)
      * [Distributed Pretraining](#distributed-pretraining)
Jared Casper's avatar
TOC fix  
Jared Casper committed
35
36
37
38
39
40
41
42
43
44
45
46
      * [GPT-3 Example](#gpt-3-example)
   * [Evaluation and Tasks](#evaluation-and-tasks)
      * [GPT Text Generation](#gpt-text-generation)
      * [GPT Evaluation](#gpt-evaluation)
         * [WikiText Perplexity Evaluation](#wikitext-perplexity-evaluation)
         * [LAMBADA Cloze Accuracy](#lambada-cloze-accuracy)
      * [BERT Task Evaluation](#bert-task-evaluation)
         * [RACE Evaluation](#race-evaluation)
         * [MNLI Evaluation](#mnli-evaluation)
   * [Datasets](#datasets)
      * [Collecting Wikipedia Training Data](#collecting-wikipedia-training-data)
      * [Collecting GPT Webtext Data](#collecting-gpt-webtext-data)
47

Mohammad's avatar
Mohammad committed
48
# Setup
49
We have tested Megatron with [NGC's PyTorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) version 20.12, which uses python 3.8, pytorch 1.8, cuda 11.1, and nccl 2.8.3.
50

51
To use this repository, please install the latest supported versions of PyTorch with GPU support (python 3.8, pytorch 1.8, cuda 11.1, and nccl 2.8.3 and above) and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start). We strongly recommend using one of [NGC's recent PyTorch containers](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) (the latest compatible version at time of publication can be pulled with `docker pull nvcr.io/nvidia/pytorch:20.12-py3`). Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation, or downstream tasks.
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
52

Mohammad's avatar
Mohammad committed
53
## Downloading Checkpoints
54
55
56
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) and [GPT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints for use to evaluate or finetuning downstream tasks. To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).

Alternatively, you can directly download the checkpoints using:
Raul Puri's avatar
Raul Puri committed
57

Mohammad's avatar
Mohammad committed
58
<pre>
59
BERT-345M-uncased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0.1_uncased.zip
60
61
BERT-345M-cased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0.1_cased.zip
GPT-345M: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
Mohammad's avatar
Mohammad committed
62
</pre>
Raul Puri's avatar
Raul Puri committed
63

64
The models require vocabulary files to run. The BERT  WordPiece vocab file can be extracted from Google's pretrained BERT models: [uncased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt), [cased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt). The GPT [vocab file](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json) and [merge table](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt) can be downloaded directly.
Raul Puri's avatar
Raul Puri committed
65
66
67

# Usage

Mohammad's avatar
Mohammad committed
68
69
70
71
72
73
74
75
After installation, there are several possible workflows. The most comprehensive is:
1. Data preprocessing
2. Pretraining
3. Finetuning (Optional for zero-shot tasks)
4. Downstream task evaluation or text generation

However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.

76
We've provided several scripts for pretraining both BERT and GPT in [`examples`](./examples) directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT interactive text generation.
Mohammad's avatar
Mohammad committed
77
78
79

# Training
## Data Preprocessing
80
The training data requires preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
Mohammad's avatar
Mohammad committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
<pre>
{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}
</pre>

The name of the `text` field of the json can be changed by using the `--json-key` flag in [`preprocess_data.py`](./tools/preprocess_data.py) The other metadata are optional and are not used in training.

The loose json is then processed into a binary format for training. To convert the json into mmap, cached index file, or the lazy loader format use `preprocess_data.py`. Set the `--dataset-impl` flag to `mmap`, `cached`, or `lazy`, respectively (default is `mmap`). An example script to prepare data for BERT training is:
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-bert \
       --vocab bert-vocab.txt \
       --dataset-impl mmap \
       --tokenizer-type BertWordPieceLowerCase \
       --split-sentences
</pre>

The output will be two files named, in this case, `my-bert_text_sentence.bin` and `my-bert_text_sentence.idx`. The `--data-path` specified in later BERT training is the full path and new filename, but without the file extension.

Stas Bekman's avatar
Stas Bekman committed
101
102
103
104
105
For T5 use the same preprocessing as BERT, perhaps renaming it to:
<pre>
       --output-prefix my-t5 \
</pre>

106
Some minor modifications are required for GPT data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:
Mohammad's avatar
Mohammad committed
107
108
109
110
111
112
113
114
115
116
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-gpt2 \
       --vocab gpt2-vocab.json \
       --dataset-impl mmap \
       --tokenizer-type GPT2BPETokenizer \
       --merge-file gpt2-merges.txt \
       --append-eod
</pre>
Raul Puri's avatar
Raul Puri committed
117

118
Here the output files are named `my-gpt2_text_document.bin` and `my-gpt2_text_document.idx`. As before, in GPT training, use the longer name without the extension as `--data-path`.
Raul Puri's avatar
Raul Puri committed
119

Mohammad's avatar
Mohammad committed
120
121
122
123
Further command line arguments are described in the source file [`preprocess_data.py`](./tools/preprocess_data.py).

## BERT Pretraining

124

Haibin Lin's avatar
Haibin Lin committed
125
The `examples/pretrain_bert.sh` script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at `--lr` to a minimum set by `--min-lr` over `--lr-decay-iters` iterations. The fraction of training iterations used for warmup is set by `--lr-warmup-fraction`. While this is single GPU training, the batch size specified by `--micro-batch-size` is a single forward-backward path batch-size and the code will perform gradient accumulation steps until it reaches `global-batch-size` which is the batch size per iteration. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with `--seed`). We use `train-iters` as the training iterations requested. Alternatively, one can provide `--train-samples` which is total number of samples to train on. If this option is present, then instead of providing `--lr-decay-iters`, one will need to provide `--lr-decay-samples`.
Mohammad's avatar
Mohammad committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139

The logging, checkpoint-saving, and evaluation intervals are specified. Checkpointing the activations facilitates the training of larger models and/or batches. Note that the `--data-path` now includes the additional `_text_sentence` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
DATA_PATH=my-bert_text_sentence

BERT_ARGS="--num-layers 24 \
           --hidden-size 1024 \
           --num-attention-heads 16 \
           --seq-length 512 \
           --max-position-embeddings 512 \
           --lr 0.0001 \
140
           --lr-decay-iters 990000 \
Mohammad's avatar
Mohammad committed
141
142
           --train-iters 2000000 \
           --min-lr 0.00001 \
143
           --lr-warmup-fraction 0.01 \
144
	   --micro-batch-size 4 \
145
           --global-batch-size 8 \
Mohammad's avatar
Mohammad committed
146
147
148
149
150
151
152
153
           --vocab-file $VOCAB_FILE \
           --split 949,50,1 \
           --fp16"

OUTPUT_ARGS="--log-interval 10 \
             --save-interval 500 \
             --eval-interval 100 \
             --eval-iters 10 \
154
             --activations-checkpoint-method uniform"
Raul Puri's avatar
Raul Puri committed
155
156

python pretrain_bert.py \
Mohammad's avatar
Mohammad committed
157
158
159
160
161
162
163
164
165
166
       $BERT_ARGS \
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).


167
168
## GPT Pretraining

169
The `examples/pretrain_gpt.sh` script runs single GPU 345M parameter GPT pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training.
Mohammad's avatar
Mohammad committed
170
171
172
173
174
175
176
177
178

It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a `json` vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the `--lr-decay-style` has been set to cosine decay.  Note that the `--data-path` now includes the additional `_text_document` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
GPT_ARGS="--num-layers 24 \
          --hidden-size 1024 \
          --num-attention-heads 16 \
          --seq-length 1024 \
          --max-position-embeddings 1024 \
          --micro-batch-size 4 \
          --global-batch-size 8 \
          --lr 0.00015 \
          --train-iters 500000 \
          --lr-decay-iters 320000 \
          --lr-decay-style cosine \
          --vocab-file $VOCAB_FILE \
          --merge-file $MERGE_FILE \
          --lr-warmup-fraction .01 \
          --fp16"
Mohammad's avatar
Mohammad committed
194
195
196

OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

197
198
python pretrain_gpt.py \
       $GPT_ARGS \
Mohammad's avatar
Mohammad committed
199
200
201
202
203
204
205
206
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH \
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

207
208
209
210
211
212
213
214
215
## T5 Pretraining

Very similar to BERT and GPT, the `examples/pretrain_t5.sh` script runs single GPU "base" (~220M parameter) T5 pretraining. The primary difference from BERT and GPT is the addition of the following arguments to accomodate the T5 architecture:

* `--kv-channels` sets the inner dimension of the "key" and "value" matrices of all attention mechanisms in the model. For BERT and GPT this defaults to the hidden size divided by the number of attention heads, but can be configured for T5.

* `--ffn-hidden-size` sets the hidden size in the feed-forward networks within a transformer layer. For BERT and GPT this defaults to 4 times the transformer hidden size, but can be configured for T5.

* `--encoder-seq-length` and `--decoder-seq-length` set the sequence length for the encoder and decoder separately.
Mohammad's avatar
Mohammad committed
216

217
All of the other arguments remain as they were for BERT and GPT pretraining.
218

219
<pre>
Jared Casper's avatar
Jared Casper committed
220
CHECKPOINT_PATH=checkpoints/t5_base
Jared Casper's avatar
Jared Casper committed
221
VOCAB_FILE=t5-vocab.txt
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
DATA_PATH=my-t5_text_sentence

T5_ARGS="--num-layers 24 \
         --hidden-size 1024 \
         --num-attention-heads 16 \
         --kv-channels 64 \
         --ffn-hidden-size 3072 \
         --encoder-seq-length 512 \
         --decoder-seq-length 128 \
         --max-position-embeddings 512 \
         --lr 0.0001 \
         --lr-decay-iters 990000 \
         --train-iters 2000000 \
         --min-lr 0.00001 \
         --lr-warmup-fraction 0.01 \
         --micro-batch-size 16 \
         --global-batch-size 2048 \
         --vocab-file $VOCAB_FILE \
Stas Bekman's avatar
Stas Bekman committed
240
         --vocab-extra-ids 100 \
241
242
243
244
245
246
         --split 949,50,1 \
         --fp16"

OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

python pretrain_t5.py \
Stas Bekman's avatar
Stas Bekman committed
247
       $T5_ARGS \
248
249
250
251
252
253
254
255
256
257
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH
</pre>


## Distributed Pretraining

The `examples/pretrain_{bert,gpt,t5}_distributed.sh` scripts use the PyTorch distributed launcher for distributed training. As such, multi-node training can be achieved by properly setting environment variables and using `init_method='env://'` in the launcher. See the official PyTorch [documentation](https://pytorch.org/docs/stable/distributed.html#launch-utility) for further description of these [environment variables](https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization). By default, multi-node training uses the [nccl](https://developer.nvidia.com/nccl) distributed backend. A simple set of additional arguments and the use of the PyTorch distributed module with the Python flag `-m torch.distributed.launch`, detailed below, are the only additional requirements to adopt distributed training.
Mohammad's avatar
Mohammad committed
258

259
We use two types of parallelism: data and model parallelism. We facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.
Mohammad's avatar
Mohammad committed
260

261
Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each).
Mohammad's avatar
Mohammad committed
262

263
<!-- The number of microbatches in a per-pipeline minibatch is controlled by the `--num-microbatches-in-minibatch` argument. With `WORLD_SIZE` GPUs, `TENSOR_MP_SIZE` tensor-model-parallel size, `PIPELINE_MP_SIZE` pipeline-model-parallel-size, `WORLD_SIZE`/(`TENSOR_MP_SIZE` * `PIPELINE_MP_SIZE`) GPUs will be used for data parallelism. The default values for `--tensor-model-parallel-size` and `--pipeline-model-parallel-size` is 1, which will not implement either form of model parallelism. -->
264

265
We have examples of how to use these two different forms of model parallelism the example scripts ending in `distributed_with_mp.sh`, note that pipeline parallelism is not currently supported in the T5 model:
Mohammad's avatar
Mohammad committed
266
267
268

Other than these minor changes, the distributed training is identical to the training on a single GPU.

269
Distributed training:
Mohammad's avatar
Mohammad committed
270
271
<pre>
WORLD_SIZE=8
272
273
TENSOR_MP_SIZE=2
PIPELINE_MP_SIZE=2
Mohammad's avatar
Mohammad committed
274
275
276
277
278
279
280

DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
                  --nnodes 1 \
                  --node_rank 0 \
                  --master_addr localhost \
                  --master_port 6000"

281
282
283
284
285
CHECKPOINT_PATH=&#60;same as above&#62;
VOCAB_FILE=&#60;same as above&#62;
DATA_PATH=&#60;same as above&#62;
MODEL_ARGS=&#60;same as above&#62;
OUTPUT_ARGS=&#60;same as above&#62;
Mohammad's avatar
Mohammad committed
286

287
288
python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_<model>.py \
                $MODEL_ARGS \
Mohammad's avatar
Mohammad committed
289
290
291
292
                $OUTPUT_ARGS \
                --save $CHECKPOINT_PATH \
                --load $CHECKPOINT_PATH \
                --data-path $DATA_PATH \
293
294
                --tensor-model-parallel-size $TENSOR_MP_SIZE \
                --pipeline-model-parallel-size $PIPELINE_MP_SIZE \
Mohammad's avatar
Mohammad committed
295
296
297
                --DDP-impl torch
</pre>

Deepak Narayanan's avatar
Deepak Narayanan committed
298
The interleaved pipelining schedule (more details in Section 2.2.2 of [our paper](https://arxiv.org/pdf/2104.04473.pdf)) can be enabled using the `--num-layers-per-virtual-pipeline-stage` argument, which controls the number of transformer layers in a virtual stage (by default with the non-interleaved schedule, each GPU will execute a single virtual stage with `NUM_LAYERS / PIPELINE_MP_SIZE` transformer layers). The total number of layers in the transformer model should be divisible by this argument value. Additionally, the number of microbatches in the pipeline (computed as `GLOBAL_BATCH_SIZE / (DATA_PARALLEL_SIZE * MICRO_BATCH_SIZE)`) should be divisible by the `PIPELINE_MP_SIZE` when using this schedule (this condition is checked in an assertion in the code). The interleaved schedule is not supported for pipelines with 2 stages (`PIPELINE_MP_SIZE=2`).
299

slym's avatar
slym committed
300
301
302
303
304
305
306
307
308
## Activation Checkpointing and Recomputation

To reduce GPU memory usage so deploy a large model to a training system, we support activation checkpointing and recomputation. We use a Transformer layer as the unit of checkpointing because the activation size bloats in the middle of a Transformer layer so checkpointing the input of a Transformer layer is storage-efficient. We support two activation checkpointing methods: `uniform` and `block`.

Uniform method uniformly divides the Transformer layers into groups of layers and stores the input activations of each group in the memory. The baseline group size is 1 and, in this case, the input activation of each Transformer layer is checkpointed. When the GPU memory is insufficient, increasing the number of layers per group reduces the memory usage thus enables running a bigger model. For example, when using the number of layers per group of 4, the input activation of each group of 4 Transformer layers is checkpointed.

Block method checkpoints the input activations of a set number of individual Transformer layers per pipeline stage and do the rest of layers without any checkpointing. This method can be used to skip checkpointing some Transformer layers until the GPU memory is fully used, which is applicable only when there is unused GPU memory. Checkpointing fewer transformer layers avoids unnecessary activation recomputation in the backprop thus improves training performance. For example, when we specify 5 layers to checkpoint of 8 layers per pipeline stage, the input activations of only the first 5 Transformer layers are checkpointed and activation recomputation for the rest 3 layers is not needed in the backprop.


309
310
## GPT-3 Example

311
In `examples/pretrain_gpt3_175B.sh` we have provided an example of how to configure Megatron to run [GPT-3](https://arxiv.org/abs/2005.14165) with 175 billion parameters on 1024 GPUs. The script is designed for [slurm](https://slurm.schedmd.com/documentation.html) with [pyxis](https://github.com/NVIDIA/pyxis) plugin but can be easily adopted to any other scheduler. It uses 8-way and 16-way tensor and pipeline parallelism, respectively. With options `global-batch-size 1536` and `rampup-batch-size 16 16 5859375`, the training will start with global batch size 16 and linearly increase the global batch size to 1536 over 5,859,375 samples with incrmeental steps 16. The training dataset can be either a single set or a multiple datasets combined with a set of weights.
312
313
314
315
316

With full global batch size of 1536 on 1024 A100 GPUs, each iteration takes around 32 seconds resulting in 138 teraFLOPs per GPU which is 44% of the theoretical peak FLOPs.


<!--
Neel Kant's avatar
Neel Kant committed
317
## REALM Pipeline
318
We are working on implementing the [REALM](https://arxiv.org/pdf/2002.08909.pdf) system. The following sections (will) reflect the three stages of training it. For now it's just the ICT code.
Neel Kant's avatar
Neel Kant committed
319
Loosely, they are pretraining the retriever modules, then jointly training the language model and the retriever, and then finetuning a question answering head on the language model with fixed retriever.
Neel Kant's avatar
Neel Kant committed
320
321

### Inverse Cloze Task (ICT) Pretraining
322
323
324
1. Have a corpus in loose JSON format with the intention of creating a collection of fixed-size blocks of text as the fundamental units of data. For a corpus like Wikipedia, this will mean multiple sentences per block but also multiple blocks per document.
Run `tools/preprocess_data.py` to construct one or more indexed datasets with the `--split-sentences` argument to make sentences the basic unit. For the original REALM system, we construct two datasets, one with the title of every document, and another with the body.
Refer to the following script
Neel Kant's avatar
Neel Kant committed
325
326
<pre>
python preprocess_data.py \
Neel Kant's avatar
Neel Kant committed
327
    --input /path/to/corpus.json \
Neel Kant's avatar
Neel Kant committed
328
329
330
    --json-keys text title \
    --split-sentences \
    --tokenizer-type BertWordPieceLowerCase \
Neel Kant's avatar
Neel Kant committed
331
332
    --vocab-file /path/to/vocab.txt \
    --output-prefix corpus_indexed \
Neel Kant's avatar
Neel Kant committed
333
334
335
336
    --workers 5  # works well for 10 CPU cores. Scale up accordingly.
</pre>

2. Use a custom samples mapping function in place of `megatron/data/realm_dataset_utils.get_block_samples_mapping` if required. To do this, you will need to implement a new function in C++ inside of `megatron/data/helpers.cpp`. The samples mapping data structure is used to select the data that will constitute every training sample in advance of the training loop.
337
 The samples mapping is responsible for holding all of the required metadata needed to construct the sample from one or more indexed datasets. In REALM, the samples mapping contains the start and end sentence indices, as well as the document index (to find the correct title for a body) and a unique ID for every block.
Neel Kant's avatar
Neel Kant committed
338
339
3. Pretrain a BERT language model using `pretrain_bert.py`, with the sequence length equal to the block size in token ids. This model should be trained on the same indexed dataset that is used to supply the blocks for the information retrieval task.
In REALM, this is an uncased bert base model trained with the standard hyperparameters.
340
341
4. Use `pretrain_ict.py` to train an `ICTBertModel` which uses two BERT-based encoders to encode queries and blocks to perform retrieval with.
The script below trains the ICT model from REALM. It refrences a pretrained BERT model (step 3) in the `--bert-load` argument. The batch size used in the paper is 4096, so this would need to be run with data parallel world size 32.
Neel Kant's avatar
Neel Kant committed
342
<pre>
Neel Kant's avatar
Neel Kant committed
343
python pretrain_ict.py \
Neel Kant's avatar
Neel Kant committed
344
345
346
347
348
349
350
351
    --num-layers 12 \
    --num-attention-heads 12 \
    --hidden-size 768 \
    --batch-size 128 \
    --seq-length 256 \
    --max-position-embeddings 256 \
    --ict-head-size 128 \
    --train-iters 100000 \
352
    --activations-checkpoint-method uniform \
Neel Kant's avatar
Neel Kant committed
353
354
355
356
357
358
    --bert-load /path/to/pretrained_bert \
    --load checkpoints \
    --save checkpoints \
    --data-path /path/to/indexed_dataset \
    --titles-data-path /path/to/titles_indexed_dataset \
    --vocab-file /path/to/vocab.txt \
Neel Kant's avatar
Neel Kant committed
359
360
361
362
363
    --lr 0.0001 \
    --num-workers 2 \
    --lr-decay-style linear \
    --weight-decay 1e-2 \
    --clip-grad 1.0 \
364
    --lr-warmup-fraction .01 \
Neel Kant's avatar
Neel Kant committed
365
366
    --save-interval 3000 \
    --query-in-block-prob 0.1 \
Neel Kant's avatar
Neel Kant committed
367
    --fp16
368

Neel Kant's avatar
Neel Kant committed
369
370
</pre>

Neel Kant's avatar
Neel Kant committed
371
### Building an Index of Block Embeddings
372
373
After having trained an ICT model, you can now embed an entire dataset of blocks by creating a `BlockData` structure. After that has been saved, you can load it
and wrap it with a `FaissMIPSIndex` to do fast similarity search which is key in the learned information retrieval pipeline. The initial index can be built with the following script, meant to be run in an interactive session. It can leverage multiple GPUs on multiple nodes to index large datasets much more quickly.
Neel Kant's avatar
Neel Kant committed
374
375

<pre>
Neel Kant's avatar
Neel Kant committed
376
python tools/create_doc_index.py \
Neel Kant's avatar
Neel Kant committed
377
378
379
380
381
    --num-layers 12 \
    --hidden-size 768 \
    --ict-head-size 128 \
    --num-attention-heads 12 \
    --batch-size 128 \
382
    --activations-checkpoint-method uniform \
Neel Kant's avatar
Neel Kant committed
383
384
    --seq-length 256 \
    --max-position-embeddings 256 \
Neel Kant's avatar
Neel Kant committed
385
386
387
388
    --ict-load /path/to/pretrained_ict \
    --data-path /path/to/indexed_dataset \
    --titles-data-path /path/to/titles_indexed_dataset \
    --block-data-path embedded_blocks.pkl \
Neel Kant's avatar
Neel Kant committed
389
390
    --indexer-log-interval 1000 \
    --indexer-batch-size 128 \
Neel Kant's avatar
Neel Kant committed
391
    --vocab-file /path/to/vocab.txt \
Neel Kant's avatar
Neel Kant committed
392
393
394
395
    --num-workers 2 \
    --fp16
</pre>

396
397
-->

Mohammad's avatar
Mohammad committed
398
399
400
401
# Evaluation and Tasks

We provide several command line arguments, detailed in the scripts listed below, to handle various zero-shot and fine-tuned downstream tasks. However, you can also finetune your model from a pretrained checkpoint on other corpora as desired. To do so, simply add the `--finetune` flag and adjust the input files and training parameters within the original training script. The iteration count will be reset to zero, and the optimizer and internal state will be reinitialized. If the fine-tuning is interrupted for any reason, be sure to remove the `--finetune` flag before continuing, otherwise the training will start again from the beginning.

402
Because evaluation requires substantially less memory than training, it may be advantageous to merge a model trained in parallel for use on a single GPU in downstream tasks. The following script accomplishes this. Currently only tensor model parallelism is supported on input and pipeline model parallelsim on the output. This example reads in a model with 2-way tensor model parallelism and writes out a model with 2-way pipeline model parallelism.
Mohammad's avatar
Mohammad committed
403
404

<pre>
405
TENSOR_MODEL_PARALLEL_SIZE=2
406
TARGET_PIPELINE_MODEL_PARALLEL_SIZE=2
Mohammad's avatar
Mohammad committed
407
408
409
410

VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m

411
WORLD_SIZE=$TENSOR_MODEL_PARALLEL_SIZE python tools/merge_mp_partitions.py \
Mohammad's avatar
Mohammad committed
412
        --model-type BERT \
413
        --tensor-model-parallel-size $TENSOR_MODEL_PARALLEL_SIZE \
414
415
        --pipeline-model-parallel-size 1 \
        --target-pipeline-model-parallel-size $TARGET_PIPELINE_MODEL_PARALLEL_SIZE \
Mohammad's avatar
Mohammad committed
416
417
418
419
420
421
422
423
        --tokenizer-type BertWordPieceLowerCase \
        --vocab-file $VOCAB_FILE \
        --num-layers 24 \
        --hidden-size 1024 \
        --num-attention-heads 16 \
        --seq-length 512 \
        --max-position-embeddings 512 \
        --load $CHECKPOINT_PATH
Jared Casper's avatar
Jared Casper committed
424
        --save $CHECKPOINT_PATH/merged
Mohammad's avatar
Mohammad committed
425
426

</pre>
Jared Casper's avatar
Jared Casper committed
427

428
Several downstream tasks are described for both GPT and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.
Mohammad's avatar
Mohammad committed
429

430
## GPT Text Generation
Mohammad's avatar
Mohammad committed
431

mshoeybi's avatar
mshoeybi committed
432
We have included a simple REST server to use for text generation in `tools/run_text_generation_server.py`. You run it much like you would start a pretraining job, specifying an appropriate pretrained checkpoint. There are also few optional parameters: `temperature`, `top-k`and `top-p`. See `--help` or the source file for more information. See [examples/run_text_generation_server_345M.sh](examples/run_text_generation_server_345M.sh) for an example of how to run the server.
433
434

Once the server is running you can use `tools/text_generation_cli.py` to query it, it takes one argument which is the host the server is running on.
Mohammad's avatar
Mohammad committed
435
436

<pre>
437
438
tools/text_generation_cli.py localhost
</pre>
Mohammad's avatar
Mohammad committed
439

440
You can also use CURL or any other tools to query the server directly:
Mohammad's avatar
Mohammad committed
441

442
443
<pre>
curl 'http://localhost:5000/api' -X 'PUT' -H 'Content-Type: application/json; charset=UTF-8'  -d '{"prompts":["Hello world"], "tokens_to_generate":1}'
Mohammad's avatar
Mohammad committed
444
445
</pre>

446
447
See [megatron/text_generation_server.py](megatron/text_generation_server.py) for more API options.

448
449
## GPT Evaluation
We include example scripts for GPT evaluation on WikiText perplexity evaluation and LAMBADA Cloze accuracy.
Mohammad's avatar
Mohammad committed
450
451
452
453

### WikiText Perplexity Evaluation
For even comparison with prior works, we evaluate perplexity on the word-level [WikiText-103 test dataset](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), and appropriately compute perplexity given the change in tokens when using our subword tokenizer.

Steven Steinke's avatar
Steven Steinke committed
454
We use the following command to run WikiText-103 evaluation on a 345M parameter model.
Mohammad's avatar
Mohammad committed
455
456
457
<pre>
TASK="WIKITEXT103"

458
VALID_DATA=&#60;wikitext path&#62;.txt
Mohammad's avatar
Mohammad committed
459
460
461
462
463
464
465
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m

COMMON_TASK_ARGS="--num-layers 24 \
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
466
467
                  --seq-length 1024 \
                  --max-position-embeddings 1024 \
Mohammad's avatar
Mohammad committed
468
469
470
471
472
473
474
                  --fp16 \
                  --vocab-file $VOCAB_FILE"

python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
475
       --tokenizer-type GPT2BPETokenizer \
Mohammad's avatar
Mohammad committed
476
477
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
478
       --micro-batch-size 8 \
479
       --activations-checkpoint-method uniform \
Mohammad's avatar
Mohammad committed
480
481
482
483
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>
484
485


Mohammad's avatar
Mohammad committed
486
487
### LAMBADA Cloze Accuracy
To compute LAMBADA cloze accuracy (the accuracy of predicting the last token given the preceeding tokens) we utilize a detokenized, processed version of the [LAMBADA dataset](https://github.com/cybertronai/bflm/blob/master/lambada_test.jsonl).
488

489
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching. Make that `lambada` is part of the file path.
Raul Puri's avatar
Raul Puri committed
490

Mohammad's avatar
Mohammad committed
491
492
<pre>
TASK="LAMBADA"
493

494
VALID_DATA=&#60;lambada path&#62;.json
Mohammad's avatar
Mohammad committed
495
496
497
498
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS=&#60;same as those in <a href="#wikitext-perplexity-evaluation">WikiText Perplexity Evaluation</a> above&#62;
Raul Puri's avatar
Raul Puri committed
499

Mohammad's avatar
Mohammad committed
500
501
502
503
504
505
506
507
python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
       --tokenizer-type GPT2BPETokenizer \
       --strict-lambada \
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
508
       --micro-batch-size 8 \
509
       --activations-checkpoint-method uniform \
Mohammad's avatar
Mohammad committed
510
511
512
513
514
515
516
517
518
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>

Further command line arguments are described in the source file [`main.py`](./tasks/main.py)

## BERT Task Evaluation
### RACE Evaluation
519
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/). The `TRAIN_DATA` and `VALID_DATA` directory contain the RACE dataset as separate `.txt` files. Note that for RACE, the batch size is the number of RACE query's to evaluate. Since each RACE query has four samples, the effective batch size passed through the model will be four times the batch size specified on the command line.
Mohammad's avatar
Mohammad committed
520
521
522
523
524
525
526
527

<pre>
TRAIN_DATA="data/RACE/train/middle"
VALID_DATA="data/RACE/dev/middle \
            data/RACE/dev/high"
VOCAB_FILE=bert-vocab.txt
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
Steven Steinke's avatar
Steven Steinke committed
528
COMMON_TASK_ARGS="--num-layers 24 \
529
530
531
532
533
534
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
                  --seq-length 512 \
                  --max-position-embeddings 512 \
                  --fp16 \
                  --vocab-file $VOCAB_FILE"
Mohammad's avatar
Mohammad committed
535
536
537
538

COMMON_TASK_ARGS_EXT="--train-data $TRAIN_DATA \
                      --valid-data $VALID_DATA \
                      --pretrained-checkpoint $PRETRAINED_CHECKPOINT \
539
                      --activations-checkpoint-method uniform \
540
                      --save-interval 10000 \
Mohammad's avatar
Mohammad committed
541
                      --save $CHECKPOINT_PATH \
542
543
544
                      --log-interval 100 \
                      --eval-interval 1000 \
                      --eval-iters 10 \
Mohammad's avatar
Mohammad committed
545
546
547
548
549
550
551
552
                      --weight-decay 1.0e-1"

python tasks/main.py \
       --task RACE \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 3 \
553
       --micro-batch-size 4 \
Mohammad's avatar
Mohammad committed
554
       --lr 1.0e-5 \
555
       --lr-warmup-fraction 0.06
Mohammad's avatar
Mohammad committed
556
557
558
559
560
561
562
563
564
565
566
567
568
</pre>

### MNLI Evaluation
The following script finetunes the BERT model for evaluation with the [MultiNLI sentence pair corpus](https://www.nyu.edu/projects/bowman/multinli/). Because the matching tasks are quite similar, the script can be quickly tweaked to work with the [Quora Question Pairs](https://www.kaggle.com/quora/question-pairs-dataset) (QQP) dataset as well.

<pre>

TRAIN_DATA="data/glue_data/MNLI/train.tsv"
VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \
            data/glue_data/MNLI/dev_mismatched.tsv"
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m_mnli
569
570
COMMON_TASK_ARGS=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
Mohammad's avatar
Mohammad committed
571
572
573
574
575
576
577

python tasks/main.py \
       --task MNLI \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 5 \
578
       --micro-batch-size 8 \
Mohammad's avatar
Mohammad committed
579
       --lr 5.0e-5 \
580
       --lr-warmup-fraction 0.065
Mohammad's avatar
Mohammad committed
581
</pre>
Raul Puri's avatar
Raul Puri committed
582

Mohammad's avatar
Mohammad committed
583
# Datasets
584
We do not host any datasets for GPT or BERT training, however, we detail their collection so that our results may be reproduced.
585
586

## Collecting Wikipedia Training Data
587
We recommend following the Wikipedia data extraction process specified by Google research: "the recommended pre-processing is to download [the latest dump](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2), extract the text with [WikiExtractor.py](https://github.com/attardi/wikiextractor), and then apply any necessary cleanup to convert it into plain text."
588

589
We recommend using the `--json` argument when using WikiExtractor, which will dump the Wikipedia data into loose json format (one json per line), making it more manageable on the file system and also readily consumable by our codebase. We recommend further preprocessing this json dataset by nltk punctuation standardization. For BERT training, use the `--split-sentences` flag to `preprocess_data.py` as described [above](#data-preprocessing) to include sentence breaks in the produced index. If you'd like to use Wikipedia data for GPT training you should still clean it with nltk/spacy/ftfy, but do not use the `--split-sentences` flag.
590

591
## Collecting GPT Webtext Data
Mohammad's avatar
Mohammad committed
592
We utilize the publicly available [OpenWebText](https://github.com/eukaryote31/openwebtext) library from [jcpeterson](https://github.com/jcpeterson/openwebtext) and [eukaryote31's](https://github.com/eukaryote31/openwebtext) work to download urls. We then filtered, cleaned, and deduplicated all downloaded content according to the procedure described in our [openwebtext](./tools/openwebtext) directory. For reddit URLs corresponding to content up to October 2018 we arrived at approximately 37GB of content.