biencoder_model.py 13.2 KB
Newer Older
Mostofa Patwary's avatar
Mostofa Patwary committed
1
2
3
4
5
import os
import torch
import sys

from megatron import get_args, print_rank_0
Mostofa Patwary's avatar
Mostofa Patwary committed
6
7
8
from megatron.checkpointing import fix_query_key_value_ordering
from megatron.checkpointing import get_checkpoint_tracker_filename
from megatron.checkpointing import get_checkpoint_name
Mostofa Patwary's avatar
Mostofa Patwary committed
9
10
from megatron import mpu, get_tokenizer
from megatron.model.bert_model import bert_position_ids
Mostofa Patwary's avatar
Mostofa Patwary committed
11
from megatron.model.enums import AttnMaskType
Mostofa Patwary's avatar
Mostofa Patwary committed
12
13
14
15
from megatron.model.language_model import get_language_model
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
Mostofa Patwary's avatar
Mostofa Patwary committed
16
from .module import MegatronModule
Mostofa Patwary's avatar
Mostofa Patwary committed
17
18
19

def biencoder_model_provider(only_query_model=False,
                             only_context_model=False,
Mostofa Patwary's avatar
Mostofa Patwary committed
20
21
22
                             biencoder_shared_query_context_model=False,
                             pre_process=True, 
                             post_process=True):
Mostofa Patwary's avatar
Mostofa Patwary committed
23
24
25
26
27
28
29
30
31
    """Build the model."""
    args = get_args()

    assert mpu.get_tensor_model_parallel_world_size() == 1 and \
        mpu.get_pipeline_model_parallel_world_size() == 1, \
        "Model parallel size > 1 not supported for ICT"

    print_rank_0('building BiEncoderModel...')

Mostofa Patwary's avatar
Mostofa Patwary committed
32
    # simpler to just keep using 2 tokentypes since
Mostofa Patwary's avatar
Mostofa Patwary committed
33
34
35
    # the LM we initialize with has 2 tokentypes
    model = BiEncoderModel(
        num_tokentypes=2,
36
        parallel_output=False,
Mostofa Patwary's avatar
Mostofa Patwary committed
37
38
        only_query_model=only_query_model,
        only_context_model=only_context_model,
39
        biencoder_shared_query_context_model=\
Mostofa Patwary's avatar
Mostofa Patwary committed
40
41
42
            biencoder_shared_query_context_model,
        pre_process=pre_process,
        post_process=post_process)
Mostofa Patwary's avatar
Mostofa Patwary committed
43
44
45
46
47
48
49
50
51
52
53
54

    return model


class BiEncoderModel(MegatronModule):
    """Bert-based module for Biencoder model."""

    def __init__(self,
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_context_model=False,
Mostofa Patwary's avatar
Mostofa Patwary committed
55
56
57
                 biencoder_shared_query_context_model=False,
                 pre_process=True,
                 post_process=True):
Mostofa Patwary's avatar
Mostofa Patwary committed
58
59
60
61
62
        super(BiEncoderModel, self).__init__()
        args = get_args()

        bert_kwargs = dict(
            num_tokentypes=num_tokentypes,
Mostofa Patwary's avatar
Mostofa Patwary committed
63
64
65
            parallel_output=parallel_output,
            pre_process=pre_process,
            post_process=post_process)
Mostofa Patwary's avatar
Mostofa Patwary committed
66

67
68
        self.biencoder_shared_query_context_model = \
            biencoder_shared_query_context_model
Mostofa Patwary's avatar
Mostofa Patwary committed
69
70
71
        assert not (only_context_model and only_query_model)
        self.use_context_model = not only_query_model
        self.use_query_model = not only_context_model
72
        self.biencoder_projection_dim = args.biencoder_projection_dim
Mostofa Patwary's avatar
Mostofa Patwary committed
73

74
        if self.biencoder_shared_query_context_model:
Mostofa Patwary's avatar
Mostofa Patwary committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
            self.model = PretrainedBertModel(**bert_kwargs)
            self._model_key = 'shared_model'
            self.query_model, self.context_model = self.model, self.model
        else:
            if self.use_query_model:
                # this model embeds (pseudo-)queries - Embed_input in the paper
                self.query_model = PretrainedBertModel(**bert_kwargs)
                self._query_key = 'query_model'

            if self.use_context_model:
                # this model embeds evidence blocks - Embed_doc in the paper
                self.context_model = PretrainedBertModel(**bert_kwargs)
                self._context_key = 'context_model'

Mostofa Patwary's avatar
Mostofa Patwary committed
89
90
    def set_input_tensor(self, input_tensor):
        """See megatron.model.transformer.set_input_tensor()"""
mpatwary's avatar
mpatwary committed
91
92
        #this is just a placeholder and will be needed when model
        #parallelism will be used
Mostofa Patwary's avatar
Mostofa Patwary committed
93
94
95
        #self.language_model.set_input_tensor(input_tensor)
        return

Mostofa Patwary's avatar
Mostofa Patwary committed
96
97
    def forward(self, query_tokens, query_attention_mask, query_types,
                context_tokens, context_attention_mask, context_types):
Mostofa Patwary's avatar
Mostofa Patwary committed
98
        """Run a forward pass for each of the models and
Mostofa Patwary's avatar
Mostofa Patwary committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        return the respective embeddings."""

        if self.use_query_model:
            query_logits = self.embed_text(self.query_model,
                                           query_tokens,
                                           query_attention_mask,
                                           query_types)
        else:
            raise ValueError("Cannot embed query without the query model.")
        if self.use_context_model:
            context_logits = self.embed_text(self.context_model,
                                             context_tokens,
                                             context_attention_mask,
                                             context_types)
        else:
            raise ValueError("Cannot embed block without the block model.")
        return query_logits, context_logits

    @staticmethod
    def embed_text(model, tokens, attention_mask, token_types):
        """Embed a batch of tokens using the model"""
        logits = model(tokens,
                              attention_mask,
                              token_types)
        return logits

    def state_dict_for_save_checkpoint(self, destination=None, \
        prefix='', keep_vars=False):
        """Save dict with state dicts of each of the models."""
        state_dict_ = {}
129
        if self.biencoder_shared_query_context_model:
Mostofa Patwary's avatar
Mostofa Patwary committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            state_dict_[self._model_key] = \
                self.model.state_dict_for_save_checkpoint(destination,
                                                          prefix,
                                                          keep_vars)
        else:
            if self.use_query_model:
                state_dict_[self._query_key] = \
                    self.query_model.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)

            if self.use_context_model:
                state_dict_[self._context_key] = \
                    self.context_model.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
149
        if self.biencoder_shared_query_context_model:
Mostofa Patwary's avatar
Mostofa Patwary committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            print_rank_0("Loading shared query-context model")
            self.model.load_state_dict(state_dict[self._model_key], \
                strict=strict)
        else:
            if self.use_query_model:
                print_rank_0("Loading query model")
                self.query_model.load_state_dict( \
                    state_dict[self._query_key], strict=strict)

            if self.use_context_model:
                print_rank_0("Loading context model")
                self.context_model.load_state_dict( \
                    state_dict[self._context_key], strict=strict)

    def init_state_dict_from_bert(self):
Mostofa Patwary's avatar
Mostofa Patwary committed
165
        """Initialize the state from a pretrained BERT model
Mostofa Patwary's avatar
Mostofa Patwary committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        on iteration zero of ICT pretraining"""
        args = get_args()

        if args.bert_load is None:
            print_rank_0("bert-load argument is None")
            return

        tracker_filename = get_checkpoint_tracker_filename(args.bert_load)
        if not os.path.isfile(tracker_filename):
            raise FileNotFoundError("Could not find BERT checkpoint")
        with open(tracker_filename, 'r') as f:
            iteration = int(f.read().strip())
            assert iteration > 0

        checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False)
        if mpu.get_data_parallel_rank() == 0:
            print('global rank {} is loading BERT checkpoint {}'.format(
                torch.distributed.get_rank(), checkpoint_name))

Mostofa Patwary's avatar
Mostofa Patwary committed
185
        # Load the checkpoint.
Mostofa Patwary's avatar
Mostofa Patwary committed
186
187
        try:
            state_dict = torch.load(checkpoint_name, map_location='cpu')
Mostofa Patwary's avatar
Mostofa Patwary committed
188
189
190
191
192
193
194
195
196
197
198
        except ModuleNotFoundError:
            from megatron.fp16_deprecated import loss_scaler
            # For backward compatibility.
            print_rank_0(' > deserializing using the old code structure ...')
            sys.modules['fp16.loss_scaler'] = sys.modules[
                'megatron.fp16_deprecated.loss_scaler']
            sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
                'megatron.fp16_deprecated.loss_scaler']
            state_dict = torch.load(checkpoint_name, map_location='cpu')
            sys.modules.pop('fp16.loss_scaler', None)
            sys.modules.pop('megatron.fp16.loss_scaler', None)
Mostofa Patwary's avatar
Mostofa Patwary committed
199
        except BaseException:
Mostofa Patwary's avatar
Mostofa Patwary committed
200
201
202
203
            print_rank_0('could not load the BERT checkpoint')
            sys.exit()

        checkpoint_version = state_dict.get('checkpoint_version', 0)
Mostofa Patwary's avatar
Mostofa Patwary committed
204
205
206
207

        # load the LM state dict into each model
        model_dict = state_dict['model']['language_model']

208
        if self.biencoder_shared_query_context_model:
Mostofa Patwary's avatar
Mostofa Patwary committed
209
            self.model.language_model.load_state_dict(model_dict)
Mostofa Patwary's avatar
Mostofa Patwary committed
210
            fix_query_key_value_ordering(self.model, checkpoint_version)
Mostofa Patwary's avatar
Mostofa Patwary committed
211
212
213
214
        else:
            if self.use_query_model:
                self.query_model.language_model.load_state_dict(model_dict)
                # give each model the same ict_head to begin with as well
215
                if self.biencoder_projection_dim > 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
216
217
218
                    query_proj_state_dict = \
                        self.state_dict_for_save_checkpoint()\
                        [self._query_key]['projection_enc']
Mostofa Patwary's avatar
Mostofa Patwary committed
219
220
                fix_query_key_value_ordering(self.query_model, checkpoint_version)

Mostofa Patwary's avatar
Mostofa Patwary committed
221
222
            if self.use_context_model:
                self.context_model.language_model.load_state_dict(model_dict)
223
224
                if self.query_model is not None and \
                    self.biencoder_projection_dim > 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
225
226
                    self.context_model.projection_enc.load_state_dict\
                        (query_proj_state_dict)
Mostofa Patwary's avatar
Mostofa Patwary committed
227
                fix_query_key_value_ordering(self.context_model, checkpoint_version)
Mostofa Patwary's avatar
Mostofa Patwary committed
228
229
230


class PretrainedBertModel(MegatronModule):
Mostofa Patwary's avatar
Mostofa Patwary committed
231
    """BERT-based encoder for queries or contexts used for
Mostofa Patwary's avatar
Mostofa Patwary committed
232
233
    learned information retrieval."""

Mostofa Patwary's avatar
Mostofa Patwary committed
234
    def __init__(self, num_tokentypes=2,
Mostofa Patwary's avatar
Mostofa Patwary committed
235
            parallel_output=True, pre_process=True, post_process=True):
Mostofa Patwary's avatar
Mostofa Patwary committed
236
237
238
239
240
        super(PretrainedBertModel, self).__init__()

        args = get_args()
        tokenizer = get_tokenizer()
        self.pad_id = tokenizer.pad
241
        self.biencoder_projection_dim = args.biencoder_projection_dim
Mostofa Patwary's avatar
Mostofa Patwary committed
242
        self.parallel_output = parallel_output
Mostofa Patwary's avatar
Mostofa Patwary committed
243
244
        self.pre_process = pre_process
        self.post_process = post_process
Mostofa Patwary's avatar
Mostofa Patwary committed
245
246
247
248
249
250
251
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(
            args.init_method_std, args.num_layers)

        self.language_model, self._language_model_key = get_language_model(
            num_tokentypes=num_tokentypes,
            add_pooler=False,
Mostofa Patwary's avatar
Mostofa Patwary committed
252
            encoder_attn_mask_type=AttnMaskType.padding,
Mostofa Patwary's avatar
Mostofa Patwary committed
253
            init_method=init_method,
Mostofa Patwary's avatar
Mostofa Patwary committed
254
255
256
            scaled_init_method=scaled_init_method,
            pre_process=self.pre_process,
            post_process=self.post_process)
Mostofa Patwary's avatar
Mostofa Patwary committed
257

258
        if args.biencoder_projection_dim > 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
259
            self.projection_enc = get_linear_layer(args.hidden_size,
260
                                                   args.biencoder_projection_dim,
Mostofa Patwary's avatar
Mostofa Patwary committed
261
262
263
264
265
266
267
268
                                                   init_method)
            self._projection_enc_key = 'projection_enc'

    def forward(self, input_ids, attention_mask, tokentype_ids=None):
        extended_attention_mask = attention_mask.unsqueeze(1)
        #extended_attention_mask = bert_extended_attention_mask(attention_mask)
        position_ids = bert_position_ids(input_ids)

Mostofa Patwary's avatar
Mostofa Patwary committed
269
270
271
272
        print_rank_0(input_ids.device)
        print_rank_0(position_ids.device)
        print_rank_0(extended_attention_mask.device)
        print_rank_0(tokentype_ids.device)
Mostofa Patwary's avatar
Mostofa Patwary committed
273
274
275
276
277
278
279

        lm_output = self.language_model(input_ids,
                                        position_ids,
                                        extended_attention_mask,
                                        tokentype_ids=tokentype_ids)
        # This mask will be used in average-pooling and max-pooling
        pool_mask = (input_ids == self.pad_id).unsqueeze(2)
Mostofa Patwary's avatar
Mostofa Patwary committed
280

281
282
        # Taking the representation of the [CLS] token of BERT
        pooled_output = lm_output[:, 0, :]
Mostofa Patwary's avatar
Mostofa Patwary committed
283
284
285

        # Converting to float16 dtype
        pooled_output = pooled_output.to(lm_output.dtype)
Mostofa Patwary's avatar
Mostofa Patwary committed
286

Mostofa Patwary's avatar
Mostofa Patwary committed
287
        # Output.
288
        if self.biencoder_projection_dim:
Mostofa Patwary's avatar
Mostofa Patwary committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
            pooled_output = self.projection_enc(pooled_output)

        return pooled_output

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
            destination, prefix, keep_vars)

303
        if self.biencoder_projection_dim > 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
304
305
306
307
308
309
310
311
312
313
314
            state_dict_[self._projection_enc_key] = \
                self.projection_enc.state_dict(destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""
        print_rank_0("loading BERT weights")
        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)

315
        if self.biencoder_projection_dim > 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
316
317
318
            print_rank_0("loading projection head weights")
            self.projection_enc.load_state_dict(
                state_dict[self._projection_enc_key], strict=strict)