Commit 0295bb89 authored by Mostofa Patwary's avatar Mostofa Patwary
Browse files

WIP: main_retriver_merge

parent 17d897e0
import os
import time
import numpy as np
import torch
from megatron import mpu, print_rank_0
from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy
from megatron import get_args, get_tokenizer, print_rank_0, mpu
def get_one_epoch_dataloader(dataset, micro_batch_size=None):
"""Specifically one epoch to be used in an indexing job."""
args = get_args()
world_size = mpu.get_data_parallel_world_size()
rank = mpu.get_data_parallel_rank()
if micro_batch_size is None:
micro_batch_size = args.micro_batch_size
global_batch_size = micro_batch_size * world_size
num_workers = args.num_workers
sampler = torch.utils.data.SequentialSampler(dataset)
# importantly, drop_last must be False to get all the data.
assert False, 'DistributedBatchSampler deprecated, change the implementation'
from megatron.data.samplers import DistributedBatchSampler
batch_sampler = DistributedBatchSampler(sampler,
batch_size=global_batch_size,
drop_last=False,
rank=rank,
world_size=world_size)
return torch.utils.data.DataLoader(dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
pin_memory=True)
def get_ict_batch(data_iterator):
# Items and their type.
keys = ['query_tokens', 'query_mask',
'context_tokens', 'context_mask', 'block_data']
datatype = torch.int64
# Broadcast data.
if data_iterator is None:
data = None
else:
data = next(data_iterator)
data_b = mpu.broadcast_data(keys, data, datatype)
# Unpack.
query_tokens = data_b['query_tokens'].long()
query_mask = data_b['query_mask'] < 0.5
context_tokens = data_b['context_tokens'].long()
context_mask = data_b['context_mask'] < 0.5
block_indices = data_b['block_data'].long()
return query_tokens, query_mask,\
context_tokens, context_mask, block_indices
def join_str_list(str_list):
"""Join a list of strings, handling spaces appropriately"""
result = ""
for s in str_list:
if s.startswith("##"):
result += s[2:]
else:
result += " " + s
return result
class BlockSampleData(object):
"""A struct for fully describing a fixed-size block of data as used in REALM
:param start_idx: for first sentence of the block
:param end_idx: for last sentence of the block (may be partially truncated in sample construction)
:param doc_idx: the index of the document from which the block comes in the original indexed dataset
:param block_idx: a unique integer identifier given to every block.
"""
def __init__(self, start_idx, end_idx, doc_idx, block_idx):
self.start_idx = start_idx
self.end_idx = end_idx
self.doc_idx = doc_idx
self.block_idx = block_idx
def as_array(self):
return np.array([self.start_idx, self.end_idx, self.doc_idx, self.block_idx]).astype(np.int64)
def as_tuple(self):
return self.start_idx, self.end_idx, self.doc_idx, self.block_idx
class BlockSamplesMapping(object):
def __init__(self, mapping_array):
# make sure that the array is compatible with BlockSampleData
assert mapping_array.shape[1] == 4
self.mapping_array = mapping_array
def __len__(self):
return self.mapping_array.shape[0]
def __getitem__(self, idx):
"""Get the data associated with an indexed sample."""
sample_data = BlockSampleData(*self.mapping_array[idx])
return sample_data
def get_block_samples_mapping(block_dataset, title_dataset, data_prefix, num_epochs,
max_num_samples, max_seq_length, seed, name, use_one_sent_docs=False):
"""Get samples mapping for a dataset over fixed size blocks. This function also requires
a dataset of the titles for the source documents since their lengths must be taken into account.
:return: samples_mapping (BlockSamplesMapping)
"""
if not num_epochs:
if not max_num_samples:
raise ValueError("Need to specify either max_num_samples "
"or num_epochs")
num_epochs = np.iinfo(np.int32).max - 1
if not max_num_samples:
max_num_samples = np.iinfo(np.int64).max - 1
# Filename of the index mapping
indexmap_filename = data_prefix
indexmap_filename += '_{}_indexmap'.format(name)
if num_epochs != (np.iinfo(np.int32).max - 1):
indexmap_filename += '_{}ep'.format(num_epochs)
if max_num_samples != (np.iinfo(np.int64).max - 1):
indexmap_filename += '_{}mns'.format(max_num_samples)
indexmap_filename += '_{}msl'.format(max_seq_length)
indexmap_filename += '_{}s'.format(seed)
if use_one_sent_docs:
indexmap_filename += '_1sentok'
indexmap_filename += '.npy'
# Build the indexed mapping if not exist.
if mpu.get_data_parallel_rank() == 0 and \
not os.path.isfile(indexmap_filename):
print(' > WARNING: could not find index map file {}, building '
'the indices on rank 0 ...'.format(indexmap_filename))
# Make sure the types match the helpers input types.
assert block_dataset.doc_idx.dtype == np.int64
assert block_dataset.sizes.dtype == np.int32
# Build samples mapping
verbose = torch.distributed.get_rank() == 0
start_time = time.time()
print_rank_0(' > building samples index mapping for {} ...'.format(
name))
# compile/bind the C++ helper code
from megatron.data.dataset_utils import compile_helper
compile_helper()
from megatron.data import helpers
mapping_array = helpers.build_blocks_mapping(
block_dataset.doc_idx,
block_dataset.sizes,
title_dataset.sizes,
num_epochs,
max_num_samples,
max_seq_length - 3, # account for added tokens
seed,
verbose,
use_one_sent_docs)
print_rank_0(' > done building samples index mapping')
np.save(indexmap_filename, mapping_array, allow_pickle=True)
print_rank_0(' > saved the index mapping in {}'.format(
indexmap_filename))
# Make sure all the ranks have built the mapping
print_rank_0(' > elapsed time to build and save samples mapping '
'(seconds): {:4f}'.format(
time.time() - start_time))
# This should be a barrier but nccl barrier assumes
# device_index=rank which is not the case for model
# parallel case
counts = torch.cuda.LongTensor([1])
torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
assert counts[0].item() == torch.distributed.get_world_size(
group=mpu.get_data_parallel_group())
# Load indexed dataset.
print_rank_0(' > loading indexed mapping from {}'.format(
indexmap_filename))
start_time = time.time()
mapping_array = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
samples_mapping = BlockSamplesMapping(mapping_array)
print_rank_0(' loaded indexed file in {:3.3f} seconds'.format(
time.time() - start_time))
print_rank_0(' total number of samples: {}'.format(
mapping_array.shape[0]))
return samples_mapping
import os
import torch
import sys
from megatron import get_args, print_rank_0
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.module import MegatronModule
from megatron import mpu, get_tokenizer
from megatron.model.bert_model import bert_attention_mask_func
from megatron.model.bert_model import bert_extended_attention_mask
from megatron.model.bert_model import bert_position_ids
from megatron.model.language_model import get_language_model
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
def biencoder_model_provider(only_query_model=False,
only_context_model=False,
shared_query_context_model=False):
"""Build the model."""
args = get_args()
assert mpu.get_tensor_model_parallel_world_size() == 1 and \
mpu.get_pipeline_model_parallel_world_size() == 1, \
"Model parallel size > 1 not supported for ICT"
print_rank_0('building BiEncoderModel...')
# simpler to just keep using 2 tokentypes since
# the LM we initialize with has 2 tokentypes
model = BiEncoderModel(
num_tokentypes=2,
parallel_output=True,
only_query_model=only_query_model,
only_context_model=only_context_model,
shared_query_context_model=shared_query_context_model)
return model
class BiEncoderModel(MegatronModule):
"""Bert-based module for Biencoder model."""
def __init__(self,
num_tokentypes=1,
parallel_output=True,
only_query_model=False,
only_context_model=False,
shared_query_context_model=False):
super(BiEncoderModel, self).__init__()
args = get_args()
bert_kwargs = dict(
num_tokentypes=num_tokentypes,
parallel_output=parallel_output)
self.shared_query_context_model = shared_query_context_model
assert not (only_context_model and only_query_model)
self.use_context_model = not only_query_model
self.use_query_model = not only_context_model
self.projection_dim = args.projection_dim
if self.shared_query_context_model:
self.model = PretrainedBertModel(**bert_kwargs)
self._model_key = 'shared_model'
self.query_model, self.context_model = self.model, self.model
else:
if self.use_query_model:
# this model embeds (pseudo-)queries - Embed_input in the paper
self.query_model = PretrainedBertModel(**bert_kwargs)
self._query_key = 'query_model'
if self.use_context_model:
# this model embeds evidence blocks - Embed_doc in the paper
self.context_model = PretrainedBertModel(**bert_kwargs)
self._context_key = 'context_model'
def forward(self, query_tokens, query_attention_mask, query_types,
context_tokens, context_attention_mask, context_types):
"""Run a forward pass for each of the models and
return the respective embeddings."""
if self.use_query_model:
query_logits = self.embed_text(self.query_model,
query_tokens,
query_attention_mask,
query_types)
else:
raise ValueError("Cannot embed query without the query model.")
if self.use_context_model:
context_logits = self.embed_text(self.context_model,
context_tokens,
context_attention_mask,
context_types)
else:
raise ValueError("Cannot embed block without the block model.")
return query_logits, context_logits
@staticmethod
def embed_text(model, tokens, attention_mask, token_types):
"""Embed a batch of tokens using the model"""
logits = model(tokens,
attention_mask,
token_types)
return logits
def state_dict_for_save_checkpoint(self, destination=None, \
prefix='', keep_vars=False):
"""Save dict with state dicts of each of the models."""
state_dict_ = {}
if self.shared_query_context_model:
state_dict_[self._model_key] = \
self.model.state_dict_for_save_checkpoint(destination,
prefix,
keep_vars)
else:
if self.use_query_model:
state_dict_[self._query_key] = \
self.query_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
if self.use_context_model:
state_dict_[self._context_key] = \
self.context_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
"""Load the state dicts of each of the models"""
if self.shared_query_context_model:
print_rank_0("Loading shared query-context model")
self.model.load_state_dict(state_dict[self._model_key], \
strict=strict)
else:
if self.use_query_model:
print_rank_0("Loading query model")
self.query_model.load_state_dict( \
state_dict[self._query_key], strict=strict)
if self.use_context_model:
print_rank_0("Loading context model")
self.context_model.load_state_dict( \
state_dict[self._context_key], strict=strict)
def init_state_dict_from_bert(self):
"""Initialize the state from a pretrained BERT model
on iteration zero of ICT pretraining"""
args = get_args()
if args.bert_load is None:
print_rank_0("bert-load argument is None")
return
tracker_filename = get_checkpoint_tracker_filename(args.bert_load)
if not os.path.isfile(tracker_filename):
raise FileNotFoundError("Could not find BERT checkpoint")
with open(tracker_filename, 'r') as f:
iteration = int(f.read().strip())
assert iteration > 0
#for param in self.query_model.language_model.parameters():
# print(param.data)
#break
#sys.exit()
checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False)
if mpu.get_data_parallel_rank() == 0:
print('global rank {} is loading BERT checkpoint {}'.format(
torch.distributed.get_rank(), checkpoint_name))
try:
state_dict = torch.load(checkpoint_name, map_location='cpu')
except BaseException:
raise ValueError("Could not load BERT checkpoint")
# load the LM state dict into each model
model_dict = state_dict['model']['language_model']
if self.shared_query_context_model:
self.model.language_model.load_state_dict(model_dict)
else:
if self.use_query_model:
self.query_model.language_model.load_state_dict(model_dict)
# give each model the same ict_head to begin with as well
if self.projection_dim > 0:
query_proj_state_dict = \
self.state_dict_for_save_checkpoint()\
[self._query_key]['projection_enc']
if self.use_context_model:
self.context_model.language_model.load_state_dict(model_dict)
if self.query_model is not None and self.projection_dim > 0:
self.context_model.projection_enc.load_state_dict\
(query_proj_state_dict)
#for param in self.query_model.language_model.parameters():
# print(param.data)
# #sys.exit()
class PretrainedBertModel(MegatronModule):
"""BERT-based encoder for queries or contexts used for
learned information retrieval."""
def __init__(self, num_tokentypes=2,
parallel_output=True):
super(PretrainedBertModel, self).__init__()
args = get_args()
tokenizer = get_tokenizer()
self.pad_id = tokenizer.pad
self.pool_type = args.pool_type
self.projection_dim = args.projection_dim
self.parallel_output = parallel_output
init_method = init_method_normal(args.init_method_std)
scaled_init_method = scaled_init_method_normal(
args.init_method_std, args.num_layers)
self.language_model, self._language_model_key = get_language_model(
attention_mask_func=bert_attention_mask_func,
num_tokentypes=num_tokentypes,
add_pooler=False,
init_method=init_method,
scaled_init_method=scaled_init_method)
if args.projection_dim > 0:
self.projection_enc = get_linear_layer(args.hidden_size,
args.projection_dim,
init_method)
self._projection_enc_key = 'projection_enc'
def forward(self, input_ids, attention_mask, tokentype_ids=None):
extended_attention_mask = attention_mask.unsqueeze(1)
#extended_attention_mask = bert_extended_attention_mask(attention_mask)
position_ids = bert_position_ids(input_ids)
lm_output = self.language_model(input_ids,
position_ids,
extended_attention_mask,
tokentype_ids=tokentype_ids)
# This mask will be used in average-pooling and max-pooling
pool_mask = (input_ids == self.pad_id).unsqueeze(2)
# Taking the representation of the [CLS] token of BERT
if self.pool_type == "cls-token":
pooled_output = lm_output[:, 0, :]
elif self.pool_type == "avg": # Average Pooling
pooled_output = lm_output.masked_fill(pool_mask, 0)
pooled_output = pooled_output.sum(1) / (pool_mask.size(1) \
- pool_mask.float().sum(1))
elif self.pool_type == "max": # Max-Pooling
pooled_output = lm_output.masked_fill(pool_mask, -1000)
pooled_output = torch.max(pooled_output, 1)[0]
# Converting to float16 dtype
pooled_output = pooled_output.to(lm_output.dtype)
# Output.
if self.projection_dim:
pooled_output = self.projection_enc(pooled_output)
return pooled_output
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
keep_vars=False):
"""For easy load when model is combined with other heads,
add an extra key."""
state_dict_ = {}
state_dict_[self._language_model_key] \
= self.language_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
if self.projection_dim > 0:
state_dict_[self._projection_enc_key] = \
self.projection_enc.state_dict(destination, prefix, keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
"""Customized load."""
print_rank_0("loading BERT weights")
self.language_model.load_state_dict(
state_dict[self._language_model_key], strict=strict)
if self.projection_dim > 0:
print_rank_0("loading projection head weights")
self.projection_enc.load_state_dict(
state_dict[self._projection_enc_key], strict=strict)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment