biencoder_model.py 11.8 KB
Newer Older
Mostofa Patwary's avatar
Mostofa Patwary committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import torch
import sys

from megatron import get_args, print_rank_0
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
from megatron.module import MegatronModule
from megatron import mpu, get_tokenizer
from megatron.model.bert_model import bert_attention_mask_func
from megatron.model.bert_model import bert_extended_attention_mask
from megatron.model.bert_model import bert_position_ids
from megatron.model.language_model import get_language_model
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal


def biencoder_model_provider(only_query_model=False,
                             only_context_model=False,
                             shared_query_context_model=False):
    """Build the model."""
    args = get_args()

    assert mpu.get_tensor_model_parallel_world_size() == 1 and \
        mpu.get_pipeline_model_parallel_world_size() == 1, \
        "Model parallel size > 1 not supported for ICT"

    print_rank_0('building BiEncoderModel...')

    # simpler to just keep using 2 tokentypes since 
    # the LM we initialize with has 2 tokentypes
    model = BiEncoderModel(
        num_tokentypes=2,
        parallel_output=True,
        only_query_model=only_query_model,
        only_context_model=only_context_model,
        shared_query_context_model=shared_query_context_model)

    return model


class BiEncoderModel(MegatronModule):
    """Bert-based module for Biencoder model."""

    def __init__(self,
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_context_model=False,
                 shared_query_context_model=False):
        super(BiEncoderModel, self).__init__()
        args = get_args()

        bert_kwargs = dict(
            num_tokentypes=num_tokentypes,
            parallel_output=parallel_output)

        self.shared_query_context_model = shared_query_context_model
        assert not (only_context_model and only_query_model)
        self.use_context_model = not only_query_model
        self.use_query_model = not only_context_model
        self.projection_dim = args.projection_dim

        if self.shared_query_context_model:
            self.model = PretrainedBertModel(**bert_kwargs)
            self._model_key = 'shared_model'
            self.query_model, self.context_model = self.model, self.model
        else:
            if self.use_query_model:
                # this model embeds (pseudo-)queries - Embed_input in the paper
                self.query_model = PretrainedBertModel(**bert_kwargs)
                self._query_key = 'query_model'

            if self.use_context_model:
                # this model embeds evidence blocks - Embed_doc in the paper
                self.context_model = PretrainedBertModel(**bert_kwargs)
                self._context_key = 'context_model'

    def forward(self, query_tokens, query_attention_mask, query_types,
                context_tokens, context_attention_mask, context_types):
        """Run a forward pass for each of the models and 
        return the respective embeddings."""

        if self.use_query_model:
            query_logits = self.embed_text(self.query_model,
                                           query_tokens,
                                           query_attention_mask,
                                           query_types)
        else:
            raise ValueError("Cannot embed query without the query model.")
        if self.use_context_model:
            context_logits = self.embed_text(self.context_model,
                                             context_tokens,
                                             context_attention_mask,
                                             context_types)
        else:
            raise ValueError("Cannot embed block without the block model.")
        return query_logits, context_logits

    @staticmethod
    def embed_text(model, tokens, attention_mask, token_types):
        """Embed a batch of tokens using the model"""
        logits = model(tokens,
                              attention_mask,
                              token_types)
        return logits

    def state_dict_for_save_checkpoint(self, destination=None, \
        prefix='', keep_vars=False):
        """Save dict with state dicts of each of the models."""
        state_dict_ = {}
        if self.shared_query_context_model:
            state_dict_[self._model_key] = \
                self.model.state_dict_for_save_checkpoint(destination,
                                                          prefix,
                                                          keep_vars)
        else:
            if self.use_query_model:
                state_dict_[self._query_key] = \
                    self.query_model.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)

            if self.use_context_model:
                state_dict_[self._context_key] = \
                    self.context_model.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        if self.shared_query_context_model:
            print_rank_0("Loading shared query-context model")
            self.model.load_state_dict(state_dict[self._model_key], \
                strict=strict)
        else:
            if self.use_query_model:
                print_rank_0("Loading query model")
                self.query_model.load_state_dict( \
                    state_dict[self._query_key], strict=strict)

            if self.use_context_model:
                print_rank_0("Loading context model")
                self.context_model.load_state_dict( \
                    state_dict[self._context_key], strict=strict)

    def init_state_dict_from_bert(self):
        """Initialize the state from a pretrained BERT model 
        on iteration zero of ICT pretraining"""
        args = get_args()

        if args.bert_load is None:
            print_rank_0("bert-load argument is None")
            return

        tracker_filename = get_checkpoint_tracker_filename(args.bert_load)
        if not os.path.isfile(tracker_filename):
            raise FileNotFoundError("Could not find BERT checkpoint")
        with open(tracker_filename, 'r') as f:
            iteration = int(f.read().strip())
            assert iteration > 0

        #for param in self.query_model.language_model.parameters():
        #    print(param.data)
            #break
            #sys.exit()

        checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False)
        if mpu.get_data_parallel_rank() == 0:
            print('global rank {} is loading BERT checkpoint {}'.format(
                torch.distributed.get_rank(), checkpoint_name))

        try:
            state_dict = torch.load(checkpoint_name, map_location='cpu')
        except BaseException:
            raise ValueError("Could not load BERT checkpoint")

        # load the LM state dict into each model
        model_dict = state_dict['model']['language_model']

        if self.shared_query_context_model:
            self.model.language_model.load_state_dict(model_dict)
        else:
            if self.use_query_model:
                self.query_model.language_model.load_state_dict(model_dict)
                # give each model the same ict_head to begin with as well
                if self.projection_dim > 0:
                    query_proj_state_dict = \
                        self.state_dict_for_save_checkpoint()\
                        [self._query_key]['projection_enc']
            if self.use_context_model:
                self.context_model.language_model.load_state_dict(model_dict)
                if self.query_model is not None and self.projection_dim > 0:
                    self.context_model.projection_enc.load_state_dict\
                        (query_proj_state_dict)
        #for param in self.query_model.language_model.parameters():
        #    print(param.data)
        #    #sys.exit()



class PretrainedBertModel(MegatronModule):
    """BERT-based encoder for queries or contexts used for 
    learned information retrieval."""

    def __init__(self, num_tokentypes=2, 
            parallel_output=True):
        super(PretrainedBertModel, self).__init__()

        args = get_args()
        tokenizer = get_tokenizer()
        self.pad_id = tokenizer.pad
        self.pool_type = args.pool_type
        self.projection_dim = args.projection_dim
        self.parallel_output = parallel_output
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(
            args.init_method_std, args.num_layers)

        self.language_model, self._language_model_key = get_language_model(
            attention_mask_func=bert_attention_mask_func,
            num_tokentypes=num_tokentypes,
            add_pooler=False,
            init_method=init_method,
            scaled_init_method=scaled_init_method)

        if args.projection_dim > 0:
            self.projection_enc = get_linear_layer(args.hidden_size,
                                                   args.projection_dim,
                                                   init_method)
            self._projection_enc_key = 'projection_enc'

    def forward(self, input_ids, attention_mask, tokentype_ids=None):
        extended_attention_mask = attention_mask.unsqueeze(1)
        #extended_attention_mask = bert_extended_attention_mask(attention_mask)
        position_ids = bert_position_ids(input_ids)


        lm_output = self.language_model(input_ids,
                                        position_ids,
                                        extended_attention_mask,
                                        tokentype_ids=tokentype_ids)
        # This mask will be used in average-pooling and max-pooling
        pool_mask = (input_ids == self.pad_id).unsqueeze(2)
        
         # Taking the representation of the [CLS] token of BERT
        if self.pool_type == "cls-token":
            pooled_output = lm_output[:, 0, :]
        elif self.pool_type == "avg":    # Average Pooling
            pooled_output = lm_output.masked_fill(pool_mask, 0)
            pooled_output = pooled_output.sum(1) / (pool_mask.size(1) \
                - pool_mask.float().sum(1))
        elif self.pool_type == "max":    # Max-Pooling
            pooled_output = lm_output.masked_fill(pool_mask, -1000)
            pooled_output = torch.max(pooled_output, 1)[0]

        # Converting to float16 dtype
        pooled_output = pooled_output.to(lm_output.dtype)
        
        # Output.
        if self.projection_dim:
            pooled_output = self.projection_enc(pooled_output)

        return pooled_output

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
            destination, prefix, keep_vars)

        if self.projection_dim > 0:
            state_dict_[self._projection_enc_key] = \
                self.projection_enc.state_dict(destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""
        print_rank_0("loading BERT weights")
        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)

        if self.projection_dim > 0:
            print_rank_0("loading projection head weights")
            self.projection_enc.load_state_dict(
                state_dict[self._projection_enc_key], strict=strict)