transformer.py 29.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""
import math
import torch
19
import torch.nn.functional as F
20

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import AttnMaskType, LayerType, AttnType
25
from megatron.model import LayerNorm
26
27
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
28
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
29
30
31
32
33
34
35
36
37
38
39
40


""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
41
    Transformer takes input of size [s, b, h] and returns a
42
43
44
45
46
47
48
49
50
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
51
    state back into h hidden dimension.
52
53
    """

54
    def __init__(self, init_method, output_layer_init_method):
55
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
56
        args = get_args()
57
58
59

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
60
            args.hidden_size,
61
            args.ffn_hidden_size,
62
            gather_output=False,
63
64
            init_method=init_method,
            skip_bias_add=True)
65

66
67
68
69
70
71
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
72
73
74

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
75
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
76
            args.hidden_size,
77
            input_is_parallel=True,
78
79
            init_method=output_layer_init_method,
            skip_bias_add=True)
80

81
82
    def forward(self, hidden_states):

83
84
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
85

86
87
88
89
90
91
92
93
94
95
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
96
97


98
class ParallelAttention(MegatronModule):
99
100
101
102
103
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
104

105
    def __init__(self, init_method,
106
107
108
109
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
110
        args = get_args()
Mohammad's avatar
Mohammad committed
111
        self.fp16 = args.fp16
112
        self.bf16 = args.bf16
113

Mohammad's avatar
Mohammad committed
114
115
        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
116
117
118
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
119
120
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
121
        self.params_dtype = args.params_dtype
122
123

        projection_size = args.kv_channels * args.num_attention_heads
124
125

        # Per attention head and per partition values.
126
        world_size = mpu.get_tensor_model_parallel_world_size()
127
        self.hidden_size_per_partition = mpu.divide(projection_size,
Mohammad's avatar
Mohammad committed
128
                                                    world_size)
129
        self.hidden_size_per_attention_head = mpu.divide(
130
            projection_size, args.num_attention_heads)
131
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
132
            args.num_attention_heads, world_size)
133
134

        # Strided linear layer.
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        if attention_type == AttnType.self_attn:
            self.query_key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
                init_method=init_method)
        else:
            assert attention_type == AttnType.cross_attn
            self.query = mpu.ColumnParallelLinear(
                args.hidden_size,
                projection_size,
                gather_output=False,
                init_method=init_method)

            self.key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
                init_method=init_method)
154

155
156
157
158
159
160
161
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
162
            self.fp16, self.bf16,
163
164
            self.attn_mask_type,
            args.masked_softmax_fusion,
165
            attention_mask_func,
166
167
168
            self.attention_softmax_in_fp32,
            coeff)

169
170
171
        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
Mohammad's avatar
Mohammad committed
172
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
173
174
175

        # Output.
        self.dense = mpu.RowParallelLinear(
176
            projection_size,
Mohammad's avatar
Mohammad committed
177
            args.hidden_size,
178
            input_is_parallel=True,
179
180
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        # Inference key-value memory
        self.inference_key_memory = None
        self.inference_value_memory = None
        self.inference_current_sequence_len = 0


    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())
        

    def forward(self, hidden_states, attention_mask,
                encoder_output=None,
                set_inference_key_value_memory=False,
                inference_max_sequence_len=None):
202
        # hidden_states: [sq, b, h]
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
        if set_inference_key_value_memory:
            assert inference_max_sequence_len and inference_max_sequence_len > 0
            self.inference_key_memory = self._allocate_memory(
                inference_max_sequence_len, hidden_states.size(1))
            self.inference_value_memory = self._allocate_memory(
                inference_max_sequence_len, hidden_states.size(1))
            self.inference_current_sequence_len = 0
        # Some consistency check.
        if inference_max_sequence_len:
            assert self.inference_current_sequence_len < \
                self.inference_key_memory.size(0)
            assert inference_max_sequence_len == \
                self.inference_key_memory.size(0)
        # This is added for safety. In case inference_max_sequence_len
        # is not provided, make sure there is no potential memory left
        # from previous inference.
        if not inference_max_sequence_len:
            self.inference_key_memory = None
            self.inference_value_memory = None
        

229
230
231
        # =====================
        # Query, Key, and Value
        # =====================
232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
268
269


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        # ===================================================
        # Adjust key, value, and attention mask for inference
        # ===================================================

        if inference_max_sequence_len:
            # Adjust the range variables.
            start = self.inference_current_sequence_len
            self.inference_current_sequence_len += key_layer.size(0)
            end = self.inference_current_sequence_len
            # Copy key and values.
            self.inference_key_memory[start:end, ...] = key_layer
            self.inference_value_memory[start:end, ...] = value_layer
            key_layer = self.inference_key_memory[:end, ...]
            value_layer = self.inference_value_memory[:end, ...]
            # Adjust attention mask
            attention_mask = attention_mask[..., start:end, :end]

287

288
289
290
        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================
291

292
        # [b, np, sq, sk]
293
294
295
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
296
                       key_layer.size(0))
297

298
        # [sq, b, np, hn] -> [sq, b * np, hn]
299
300
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
301
        # [sk, b, np, hn] -> [sk, b * np, hn]
302
303
304
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

305
        # preallocting result tensor: [b * np, sq, sk]
306
        matmul_result = torch.empty(
307
308
            output_size[0]*output_size[1],
            output_size[2],
309
            output_size[3],
310
            dtype=query_layer.dtype,
311
312
            device=torch.cuda.current_device())

313
        # Raw attention scores. [b * np, sq, sk]
314
315
        matmul_result = torch.baddbmm(
            matmul_result,
316
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
317
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
318
319
            beta=0.0, alpha=(1.0/self.norm_factor))

320
        # change view to [b, np, sq, sk]
321
322
        attention_scores = matmul_result.view(*output_size)

323

324
325
326
        # ===========================
        # Attention probs and dropout
        # ===========================
327

328
        # attention scores and attention mask [b, np, sq, sk]
329
330
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)
331

332
333
334
335
336
337
        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        with mpu.get_cuda_rng_tracker().fork():
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
338
        # Context layer. [sq, b, hp]
339
340
        # =========================

341
342
        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]
343

344
        # context layer shape: [b, np, sq, hn]
345
346
347
348
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))
349

350
        # change view [sk, b * np, hn]
351
        value_layer = value_layer.view(value_layer.size(0),
352
                                       output_size[0] * output_size[1], -1)
353

354
        # change view [b * np, sq, sk]
355
356
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)
357

358
        # matmul: [b * np, sq, hn]
359
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
360

361
        # change view [b, np, sq, hn]
362
363
        context_layer = context_layer.view(*output_size)

364
        # [b, np, sq, hn] --> [sq, b, np, hn]
365
366
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

367
        # [sq, b, np, hn] --> [sq, b, hp]
368
369
370
371
372
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        # =================
373
        # Output. [sq, b, h]
374
375
376
        # =================

        output, bias = self.dense(context_layer)
377

378
379
380
        return output, bias


381
def bias_dropout_add(x, bias, residual, prob, training):
382
383
384
385
386
387
388
389
390
391
392
393
394
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
395
def bias_dropout_add_fused_train(x, bias, residual, prob):
396
397
398
399
400
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
401
def bias_dropout_add_fused_inference(x, bias, residual, prob):
402
403
    # type: (Tensor, Tensor, Tensor, float) -> Tensor
    return bias_dropout_add(x, bias, residual, prob, False)
404
405
406
407
408


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

409
    Transformer layer takes input with size [b, s, h] and returns an
410
411
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
412

413
414
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
415
                 self_attn_mask_type=AttnMaskType.padding):
Mohammad's avatar
Mohammad committed
416
        args = get_args()
417
418

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
419
        self.layer_number = layer_number
420
        self.layer_type = layer_type
421
422

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
423
            = args.apply_residual_connection_post_layernorm
424

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
425
426
427
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

428
429
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
430
431
            args.hidden_size,
            eps=args.layernorm_epsilon)
432
433

        # Self attention.
434
435
436
437
438
439
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
440
441
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
442

443
        # Layernorm on the attention output
444
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
445
446
            args.hidden_size,
            eps=args.layernorm_epsilon)
447

448
449
450
451
452
453
454
455
456
457
458
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
                eps=args.layernorm_epsilon)

459
        # MLP
460
        self.mlp = ParallelMLP(init_method,
Mohammad's avatar
Mohammad committed
461
                               output_layer_init_method)
462

463
    def forward(self, hidden_states, attention_mask,
464
465
466
467
                encoder_output=None,
                enc_dec_attn_mask=None,
                set_inference_key_value_memory=False,
                inference_max_sequence_len=None):
468
469
        # hidden_states: [b, s, h]

470
        # Layer norm at the beginning of the transformer layer.
471
472
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
473
        attention_output, attention_bias = \
474
475
476
477
478
            self.self_attention(
                layernorm_output,
                attention_mask,
                set_inference_key_value_memory=set_inference_key_value_memory,
                inference_max_sequence_len=inference_max_sequence_len)
479

480
481
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
482
483
484
485
            residual = layernorm_output
        else:
            residual = hidden_states

486
487
        # jit scripting for a nn.module (with dropout) is not
        # trigerring the fusion kernel. For now, we use two
488
489
490
491
492
493
494
        # different nn.functional routines to account for varying
        # dropout semantics during training and inference phases.
        if self.bias_dropout_fusion:
            if self.training:
                bias_dropout_add_func = bias_dropout_add_fused_train
            else:
                bias_dropout_add_func = bias_dropout_add_fused_inference
495
        else:
496
497
            bias_dropout_add_func = get_bias_dropout_add(self.training)

498
        # re-enable torch grad to enable fused optimization.
499
500
501
502
503
504
505
        with torch.enable_grad():
            layernorm_input = bias_dropout_add_func(
                attention_output,
                attention_bias.expand_as(residual),
                residual,
                self.hidden_dropout)

506
507
508
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

531
        # MLP.
532
        mlp_output, mlp_bias = self.mlp(layernorm_output)
533

534
535
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
536
            residual = layernorm_output
537
        else:
538
539
            residual = layernorm_input

540
        # re-enable torch grad to enable fused optimization.
541
542
543
544
545
546
        with torch.enable_grad():
            output = bias_dropout_add_func(
                mlp_output,
                mlp_bias.expand_as(residual),
                residual,
                self.hidden_dropout)
547
548
549
550
551
552
553

        return output


class ParallelTransformer(MegatronModule):
    """Transformer class."""

554
    def __init__(self, init_method, output_layer_init_method,
555
                 layer_type=LayerType.encoder,
556
557
                 self_attn_mask_type=AttnMaskType.padding,
                 pre_process=True, post_process=True):
558
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
559
        args = get_args()
560

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
561
        self.bf16 = args.bf16
562
        self.fp32_residual_connection = args.fp32_residual_connection
563
564
565
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
566

567
        # Store activation checkpoiting flag.
568
569
        self.activations_checkpoint_method = args.activations_checkpoint_method
        self.activations_checkpoint_num_layers = args.activations_checkpoint_num_layers
mshoeybi's avatar
mshoeybi committed
570
        self.distribute_checkpointed_activations = args.distribute_checkpointed_activations
571

572
        # Number of layers.
573
        assert args.num_layers % mpu.get_pipeline_model_parallel_world_size() == 0, \
574
            'num_layers must be divisible by pipeline_model_parallel_size'
575
        self.num_layers = args.num_layers // mpu.get_pipeline_model_parallel_world_size()
Mohammad's avatar
Mohammad committed
576
577
578

        # Transformer layers.
        def build_layer(layer_number):
579
            return ParallelTransformerLayer(
580
581
582
                init_method,
                output_layer_init_method,
                layer_number,
583
584
                layer_type=layer_type,
                self_attn_mask_type=self_attn_mask_type)
585
586
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
587
588
589
590
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
591
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
592
593
594
595
596
597
598
599
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
600
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
601
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
602
603
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
604
            # Each stage gets a contiguous set of layers.
605
            offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
606

607
        self.layers = torch.nn.ModuleList(
608
            [build_layer(i + 1 + offset) for i in range(self.num_layers)])
609

610
        if self.post_process:
611
612
613
614
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
                eps=args.layernorm_epsilon)
615

Mohammad's avatar
Mohammad committed
616
    def _get_layer(self, layer_number):
617
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
618

619
620
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
621
622
623
624
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
625
626
627
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
628
629
                for index in range(start, end):
                    layer = self._get_layer(index)
630
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
631
632
633
                return x_
            return custom_forward

mshoeybi's avatar
mshoeybi committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        def distribute_checkpointed_activations_helper(layer_number):
            """Distribute checkpointed activations across the tensor model
               Parallel ranks if the `distribute-checkpointed-activations
               is on and either of the following conditions is met:
                 - it is not the first layer in the in the pipeline stage.
                   The first layer is used in the pipeline parallelism 
                   and changing its shape throws error in the backward pass.
                 - we are at the first pipline stage so the input tensor is
                   not used in pipeline parallelism. Note that no pipeline
                   parallelism is a special case of this.
            """
            not_first_layer_in_pipeline_stage = (layer_number > 0)
            is_first_pipeline_stage = (
                mpu.get_pipeline_model_parallel_rank() == 0)
            return self.distribute_checkpointed_activations and \
                (not_first_layer_in_pipeline_stage or is_first_pipeline_stage)

651
652
653
654
655
656
657
658
        if self.activations_checkpoint_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                hidden_states = mpu.checkpoint(
                    custom(l, l + self.activations_checkpoint_num_layers),
mshoeybi's avatar
mshoeybi committed
659
                    distribute_checkpointed_activations_helper(l),
660
661
662
663
664
665
666
667
668
669
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                l += self.activations_checkpoint_num_layers
        elif self.activations_checkpoint_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.activations_checkpoint_num_layers:
                    hidden_states = mpu.checkpoint(
                        custom(l, l + 1),
mshoeybi's avatar
mshoeybi committed
670
                        distribute_checkpointed_activations_helper(l),
671
672
673
674
675
676
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
            raise ValueError("Invalid activation checkpoint method.")
677
678
679

        return hidden_states

680
    def set_input_tensor(self, input_tensor):
681
682
683
684
685
686
687
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
688
689
        self.input_tensor = input_tensor

690
691
692
693
694
    def forward(self, hidden_states, attention_mask,
                encoder_output=None,
                enc_dec_attn_mask=None,
                set_inference_key_value_memory=False,
                inference_max_sequence_len=None):
695

696
        # Checks.
697
        if inference_max_sequence_len:
698
            assert self.activations_checkpoint_method is None, \
699
                'inference does not work with activation checkpointing'
700

701
        if self.pre_process:
702
            # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
mshoeybi's avatar
mshoeybi committed
703
            # If the input flag for fp32 residual connection is set, convert for float.
704
705
            if self.fp32_residual_connection:
                hidden_states = hidden_states.transpose(0, 1).contiguous().float()
mshoeybi's avatar
mshoeybi committed
706
            # Otherwise, leave it as is.
707
708
            else:
                hidden_states = hidden_states.transpose(0, 1).contiguous()
709
        else:
710
            # See set_input_tensor()
711
            hidden_states = self.input_tensor
712

Vijay Korthikanti's avatar
Vijay Korthikanti committed
713
714
        if encoder_output is not None:
             encoder_output = encoder_output.transpose(0, 1).contiguous()
715

716
        if self.activations_checkpoint_method is not None:
717
            hidden_states = self._checkpointed_forward(hidden_states,
718
719
720
                                                       attention_mask,
                                                       encoder_output,
                                                       enc_dec_attn_mask)
721
        else:
Mohammad's avatar
Mohammad committed
722
723
            for index in range(self.num_layers):
                layer = self._get_layer(index)
724
725
726
727
728
729
730
                hidden_states = layer(
                    hidden_states,
                    attention_mask,
                    encoder_output=encoder_output,
                    enc_dec_attn_mask=enc_dec_attn_mask,
                    set_inference_key_value_memory=set_inference_key_value_memory,
                    inference_max_sequence_len=inference_max_sequence_len)
731

732
        # Final layer norm.
733
        if self.post_process:
734
735
            # Reverting data format change [s b h] --> [b s h].
            hidden_states = hidden_states.transpose(0, 1).contiguous()
736
737
738
            output = self.final_layernorm(hidden_states)
        else:
            output = hidden_states
739
        
740
        return output