distrib_optimizer.py 31.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
25
26
from megatron import get_timers
from megatron import mpu

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
27
28
29
30
31
32
33
34
35
36
37
38
39


class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


40
class DistributedOptimizer(MixedPrecisionOptimizer):
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    @classmethod
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):

        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
        param_shard_map = {}
        for param, param_world_indexes in param_world_index_map.items():

            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
                param_shard_map[param] = {
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
                }

        return param_shard_map

    @classmethod
    def get_model_gbuf_shard(cls, model, dtype):

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer shard.
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

85
        # All world shards. (i.e., across all data parallel ranks)
86
87
88
89
90
91
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
92
93

        # Local DP's shards.
94
95
96
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
        gbuf_local_shard = gbuf_world_shard.normalize()

97
        # Get each param's shards.
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
            "world_all" : gbuf_world_all_shards,
            "param_map" : param_shard_map,
            "max_shard_size" : max_gbuf_shard_size,
        }

        return data

    @classmethod
    def get_model_gbuf_shard_map(cls, model):
        return {
            dtype : cls.get_model_gbuf_shard(model, dtype)
            for dtype in model._grad_buffers
        }

    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
122
123
        '''Create a reverse of the model_gbuf_shards, for referencing in
        opposite direction.'''
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
                    param_size = gbuf_shard_map["param_map"][param]["param"].size

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        return group_shards

    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

170
        # Allocator method.
171
172
173
174
175
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
176

177
        # Allocate each group's param/grad shard.
178
179
180
181
182
183
184
185
186
187
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # Allocate shard.
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

188
            # Update group's param.
189
190
191
192
193
194
195
196
197
198
199
200
            group_shard["orig_group"]["params"] = [ main_param ]


    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 bf16, grad_scaler, models):

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            bf16, grad_scaler, models)

201
202
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
203
        args = get_args()
204
        assert args.use_contiguous_buffers_in_local_ddp
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)

        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

        # Allocate main param shards.
        self.allocate_main_param_shards(self.opt_group_shards)

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

        # Initialize main params.
        self._copy_model_params_to_main_params()

230
231
232
    def get_model_parallel_group(self):
        return None

233
234
235
236
237
238
239
240
241
    # >>>
    @staticmethod
    def has_nan_debug(tensors):
        if isinstance(tensors, torch.Tensor):
            tensors = [ tensors ]
        assert isinstance(tensors, list)
        has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
        has_nan = any(has_nans)
        return has_nan
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    # def get_local_model_param_views(self):
    #     '''** FOR DEBUGGING. **'''
    #     model_param_views = []
    #     for group_index, opt_group_shard in enumerate(self.opt_group_shards):
    #         for param, opt_shard in opt_group_shard["param_map"].items():
    #             model_index, dtype = self.param_gbuf_map[param]
    #             gbuf_shard_map = \
    #                 self.model_gbuf_shards[model_index][dtype]["param_map"][param]
    #             model_param_shard = gbuf_shard_map["param"]
    #             model_param_views.append(
    #                 param.view(-1)[model_param_shard.start:model_param_shard.end])
    #     return model_param_views
    # def get_local_model_grad_views(self):
    #     '''** FOR DEBUGGING. **'''
    #     model_grad_views = []
    #     for group_index, opt_group_shard in enumerate(self.opt_group_shards):
    #         for param, opt_shard in opt_group_shard["param_map"].items():
    #             model_index, dtype = self.param_gbuf_map[param]
    #             gbuf = self.models[model_index]._grad_buffers[dtype].data
    #             gbuf_shard_map = \
    #                 self.model_gbuf_shards[model_index][dtype]["param_map"][param]
    #             gbuf_world_shard = gbuf_shard_map["gbuf_world"]
    #             model_grad_views.append(
    #                 gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
    #     return model_grad_views
    # def get_world_model_params(self):
    #     '''** FOR DEBUGGING. **'''
    #     return [ p for m in self.models for p in m.parameters() ]
    # def get_world_model_grads(self):
    #     '''** FOR DEBUGGING. **'''
    #     return [ p.main_grad for p in self.get_world_model_params() ]
273
    # <<<
274
275
276
277
278
279
280
281
282
283
284

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
    def get_main_param(self, group_index):
        return self.get_main_params()[group_index]
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

    def state_dict(self):
285
286
287
288
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
289
        state_dict['groups'] = [g['params'] for g in self.optimizer.param_groups]
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        return state_dict


    def load_state_dict(self, state_dict):
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')

        # Copy data for the main params.
315
        current_groups = [ g["params"] for g in self.optimizer.param_groups ]
316
317
        assert "groups" in state_dict, "key 'groups' not in state_dict."
        for current_group, saved_group in zip(current_groups, state_dict["groups"]):
318
319
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)
320
321
322

    def zero_grad(self, set_to_none=True):

323
        # Collect model params.
324
325
326
327
328
        model_params = []
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                model_params.extend(param_map.keys())

329
        # Distributed optimizer requires contiguous buffer; don't set to None.
Lawrence McAfee's avatar
Lawrence McAfee committed
330
        _zero_grad_group_helper(model_params, set_to_none = False)
331

332
    # >>>
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
                gbuf_view_items.append((model_index, dtype, gbuf_views))

        return gbuf_view_items
349
350
351

    def get_model_grad_buffer_dp_views_chunked(self, mem_savings_factor):

352
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
353
        chunk_view_items = []
354
355
356
357
358
359
360
        for model_index, dtype, gbuf_views in gbuf_view_items:

            # ** Sanity check. ** (should be unnecessary; see comment above)
            view_numel = gbuf_views[0].nelement()
            for view in gbuf_views:
                assert view.nelement() == view_numel

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
            chunk_numel_min = 1024**2
            chunk_numel_max = view_numel
            # chunk_numel_min_log = math.log(chunk_numel_min)
            # chunk_numel_max_log = math.log(chunk_numel_max)
            # chunk_numel_log = (chunk_numel_min_log + chunk_numel_max_log) / 2
            # chunk_numel = int(math.exp(chunk_numel_log))
            chunk_numel = int(
                mem_savings_factor * chunk_numel_min
                + (1 - mem_savings_factor) * chunk_numel_max
            )

            # >>>
            # from lutil import pax
            # pax(0, {
            #     "view_numel" : view_numel,
            #     "chunk_numel_min" : chunk_numel_min,
            #     "chunk_numel_max" : chunk_numel_max,
            #     "chunk_numel_min_log" : chunk_numel_min_log,
            #     "chunk_numel_max_log" : chunk_numel_max_log,
            #     "chunk_numel_log" : chunk_numel_log,
            #     "chunk_numel" : chunk_numel,
            #     "mem_savings_factor" : mem_savings_factor,
            # })
            # <<<

            for start_index in range(0, view_numel, chunk_numel):
                end_index = min(view_numel, start_index + chunk_numel)
                chunk_views = [ t[start_index:end_index] for t in gbuf_views ]
                chunk_view_items.append((model_index, dtype, chunk_views))
390
391

        # >>>
392
393
394
        # from lutil import pax
        # pax(0, {
        #     "gbuf_view_items" : [(a,b,"%d / %s" % (len(c), [ d.nelement() for d in c ])) for a,b,c in gbuf_view_items],
395
        #     "chunk_view_items" : [(a,b,"%d / %s" % (len(c), [ d.nelement() for d in c ])) for a,b,c in chunk_view_items],
396
        # })
397
398
        # <<<

399
        return chunk_view_items
400
401
402
    # <<<

    # >>>
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    # def reduce_model_grads_0(self, args, timers):
    #     '''Note: this is a different order of reduction, versus the non-
    #        distributed optimizer, which reduces: 1) all grads, 2) embedding
    #        grads.
    #     '''

    #     # All-reduce embedding grads.
    #     timers('backward-embedding-all-reduce').start()
    #     self.allreduce_embedding_grads(args)
    #     timers('backward-embedding-all-reduce').stop()

    #     # Reduce-scatter all grads.
    #     timers('backward-params-all-reduce').start()
    #     data_parallel_rank = mpu.get_data_parallel_rank()
    #     data_parallel_world_size = mpu.get_data_parallel_world_size()
    #     data_parallel_group = mpu.get_data_parallel_group()
419

420
421
422
423
424
425
426
427
428
429
430
431
    #     gbuf_view_items = self.get_model_grad_buffer_dp_views()
    #     for model_index, dtype, gbuf_views in gbuf_view_items:
    #         gbuf = self.models[model_index]._grad_buffers[dtype].data
    #         gbuf /= data_parallel_world_size
    #         torch.distributed.reduce_scatter(
    #             gbuf_views[data_parallel_rank],
    #             gbuf_views,
    #             group = data_parallel_group,
    #         )
    #     timers('backward-params-all-reduce').stop()
    # def reduce_model_grads_1(self, args, timers):
    def reduce_model_grads(self, args, timers):
432
433
434
435
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
436

437
438
439
440
441
        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads(args)
        timers('backward-embedding-all-reduce').stop()

442
        # Reduce-scatter setup.
443
444
445
446
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()
447
        mem_savings_factor = args.distrib_opt_comm_mem_savings
448

449
450
451
452
453
454
455
456
        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

        # Reduce scatter all grads.
        gbuf_view_items = \
            self.get_model_grad_buffer_dp_views_chunked(mem_savings_factor)
457
        for model_index, dtype, gbuf_views in gbuf_view_items:
458
459
            # gbuf = self.models[model_index]._grad_buffers[dtype].data
            # gbuf /= data_parallel_world_size
460
461
462
463
464
465
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
        timers('backward-params-all-reduce').stop()
466
467
468
469
470
471
    # def reduce_model_grads(self, *args):
    #     # >>>
    #     return
    #     # <<<
    #     # self.reduce_model_grads_0(*args)
    #     self.reduce_model_grads_1(*args)
472
473
474
    # <<<

    # >>>
475
    # def gather_model_params_0(self, args, timers):
476

477
    #     timers('backward-params-all-gather').start()
478

479
480
    #     data_parallel_rank = mpu.get_data_parallel_rank()
    #     data_parallel_group = mpu.get_data_parallel_group()
481

482
483
484
485
486
487
488
489
    #     # All-gather updated main params.
    #     gbuf_view_items = self.get_model_grad_buffer_dp_views()
    #     for model_index, dtype, gbuf_views in gbuf_view_items:
    #         torch.distributed.all_gather(
    #             gbuf_views,
    #             gbuf_views[data_parallel_rank],
    #             group = data_parallel_group,
    #         )
490

491
492
493
494
495
496
    #     # Each model param now contains its updated values in its
    #     # '.main_grad' field.
    #     for model in self.models:
    #         for dtype, param_map in model._grad_buffer_param_index_map.items():
    #             for param in param_map:
    #                 param.detach().copy_(param.main_grad)
497

498
    #     timers('backward-params-all-gather').stop()
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    # def gather_model_params_1(self, args, timers):

    #     timers('backward-params-all-gather').start()

    #     data_parallel_rank = mpu.get_data_parallel_rank()
    #     data_parallel_group = mpu.get_data_parallel_group()

    #     # All-gather updated main params.
    #     # - All grad buffer views are guaranteed to have the same num elements
    #     #   across all data parallel ranks, with grad buffer padding that is done
    #     #   in distributed.py. Thus, all sub-views will have consistent start/end
    #     #   indexes across data parallel ranks.
    #     gbuf_view_items = self.get_model_grad_buffer_dp_views()

    #     # sub_view_numel = 1 * 1024
    #     # sub_view_numel = 1 * 131072
    #     sub_view_numel = 256 * 1048576
    #     for model_index, dtype, gbuf_views in gbuf_view_items:

    #         # ** Sanity check. ** (should be unnecessary; see comment above)
    #         view_numel = gbuf_views[0].nelement()
    #         for view in gbuf_views:
    #             assert view.nelement() == view_numel

    #         for start_index in range(0, view_numel, sub_view_numel):

    #             end_index = min(view_numel, start_index + sub_view_numel)
    #             sub_views = [ t[start_index:end_index] for t in gbuf_views ]

    #             torch.distributed.all_gather(
    #                 sub_views,
    #                 sub_views[data_parallel_rank],
    #                 group = data_parallel_group,
    #             )

    #     # Each model param now contains its updated values in its
    #     # '.main_grad' field.
    #     for model in self.models:
    #         for dtype, param_map in model._grad_buffer_param_index_map.items():
    #             for param in param_map:
    #                 param.detach().copy_(param.main_grad)

    #     timers('backward-params-all-gather').stop()
542
543
    # def gather_model_params_1(self, args, timers):
    def gather_model_params(self, args, timers):
544
545
546
547
548

        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
549
        mem_savings_factor = args.distrib_opt_comm_mem_savings
550
551
552
553
554
555

        # All-gather updated main params.
        # - All grad buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, with grad buffer padding that is done
        #   in distributed.py. Thus, all sub-views will have consistent start/end
        #   indexes across data parallel ranks.
556

557
558
        # sub_numel = 1 * 1024
        # sub_numel = 1 * 131072
559
560
561
562
        # sub_numel = 1024 * 1048576
        # gbuf_view_items = self.get_model_grad_buffer_dp_views_SUB(sub_numel)
        gbuf_view_items = \
            self.get_model_grad_buffer_dp_views_chunked(mem_savings_factor)
563
        for model_index, dtype, gbuf_views in gbuf_view_items:
564
565
566
567
568
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
    # def gather_model_params_2(self, args, timers):

    #     raise Exception("_all_gather_base not applicable when each DP rank owns contiguous range of grad buffer.")

    #     timers('backward-params-all-gather').start()

    #     data_parallel_rank = mpu.get_data_parallel_rank()
    #     data_parallel_world_size = mpu.get_data_parallel_world_size()
    #     data_parallel_group = mpu.get_data_parallel_group()

    #     # All-gather updated main params.
    #     # - All grad buffer views are guaranteed to have the same num elements
    #     #   across all data parallel ranks, with grad buffer padding that is done
    #     #   in distributed.py. Thus, all sub-views will have consistent start/end
    #     #   indexes across data parallel ranks.
    #     gbuf_items = self.get_model_grad_buffers_SINGLE()

    #     # local_sub_numel = 1 * 1024
    #     # local_sub_numel = 1 * 131072
    #     ideal_local_numel = 128 * 1048576
    #     ideal_world_numel = data_parallel_world_size * ideal_local_numel
    #     for model_index, dtype, gbuf in gbuf_items:

    #         gbuf_numel = gbuf.nelement()

    #         # >>>
    #         # from lutil import pax
    #         # pax(0, {
    #         #     "gbuf_items" : [ (a, b, c.shape) for a, b, c in gbuf_items ],
    #         #     "gbuf" : str(gbuf.shape),
    #         #     "gbuf_numel" : gbuf_numel,
    #         #     "local_sub_numel" : local_sub_numel,
    #         #     "world_sub_numel" : world_sub_numel,
    #         # })
    #         # <<<

    #         for world_start_index in range(0, gbuf_numel, ideal_world_numel):
    #             world_end_index = \
    #                 min(gbuf_numel, world_start_index + ideal_world_numel)
    #             world_numel = world_end_index - world_start_index
    #             assert world_numel % data_parallel_world_size == 0
    #             local_numel = int(world_numel / data_parallel_world_size)
    #             local_start_index = \
    #                 world_start_index + data_parallel_rank * local_numel
    #             local_end_index = \
    #                 min(gbuf_numel, local_start_index + local_numel)

    #             try:
    #                 world_view = gbuf[world_start_index:world_end_index]
    #                 local_view = gbuf[local_start_index:local_end_index]
    #             except:
    #                 # >>>
    #                 from lutil import pax
    #                 pax(0, {
    #                     "world_start_index" : world_start_index,
    #                     "world_end_index" : world_end_index,
    #                     "local_start_index" : local_start_index,
    #                     "local_end_index" : local_end_index,
    #                 })
    #                 # <<<
                
    #             try:
    #                 torch.distributed._all_gather_base(
    #                     world_view,
    #                     local_view,
    #                     group = data_parallel_group,
    #                 )
    #             except:
    #                 # >>>
    #                 from lutil import pax
    #                 pax(0, {
    #                     "data_parallel_rank" : data_parallel_rank,
    #                     # "local_sub_numel" : local_sub_numel,
    #                     # "world_sub_numel" : world_sub_numel,
    #                     "world_start_index" : world_start_index,
    #                     "world_end_index" : world_end_index,
    #                     "local_start_index" : local_start_index,
    #                     "local_end_index" : local_end_index,
    #                     "gbuf" : str(gbuf.shape),
    #                     "world_view" : str(world_view.shape),
    #                     "local_view" : str(local_view.shape),
    #                     "local_sub_numel / ideal" : local_sub_numel,
    #                     "local_sub_numel / act" :
    #                     local_end_index - local_start_index,
    #                 })
    #                 # <<<

    #             # >>>
    #             # from lutil import pax, tp
    #             # pax(0, {
    #             #     # "gbuf" : tp(gbuf),
    #             #     "world range" : "%d, %d"%(world_start_index, world_end_index),
    #             #     "local range" : "%d, %d"%(local_start_index, local_end_index),
    #             #     "world_view" : tp(world_view),
    #             #     "local_view" : tp(local_view),
    #             #     "gbuf view" : tp(gbuf[world_start_index:world_end_index]),
    #             # })
    #             # <<<

    #     # >>>
    #     for model_index, dtype, gbuf in gbuf_items:
    #         if self.has_nan_debug(gbuf):
    #             raise Exception("hi.")
    #     # from lutil import pax, tp
    #     # pax(0, {
    #     #     "gbuf_items" : [ (a, b, tp(c)) for a, b, c in gbuf_items ],
    #     # })
    #     # <<<

    #     # Each model param now contains its updated values in its
    #     # '.main_grad' field.
    #     for model in self.models:
    #         for dtype, param_map in model._grad_buffer_param_index_map.items():
    #             for param in param_map:
    #                 param.detach().copy_(param.main_grad)
    #                 # >>>
    #                 if self.has_nan_debug(param):
    #                     raise Exception("wha?")
    #                 # <<<

    #     timers('backward-params-all-gather').stop()
699
700
701
702
703
704
705
    # def gather_model_params(self, *args):
    #     # >>>
    #     # return
    #     # <<<
    #     # self.gather_model_params_0(*args)
    #     self.gather_model_params_1(*args)
    #     # self.gather_model_params_2(*args)
706

707
708
    #     # ~~~
    #     # self.debug_model(0, "after / gather_model_params", 0)
709
    # <<<
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

    def _collect_main_grad_data_for_unscaling(self):
        return [ g.data for g in self.get_main_grads() ]

    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            main_param = self.get_main_param(group_index)
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]

                main_view.detach().copy_(model_view)


734
    def _copy_model_grads_to_main_grads(self):
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Copy from DDP's contiguous buffer to main shard's grad.
                model_grad = self.models[model_index]._grad_buffers[dtype].data
                main_grad = self.get_main_grad(group_index)

                # Copy sub-range within tensor.
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]

                main_view.detach().copy_(model_view)


757
    def _copy_main_params_to_model_params(self):
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
                model_param = self.models[model_index]._grad_buffers[dtype].data
                main_param = self.get_main_param(group_index)

                # Copy sub-range within tensor.
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]

                model_view.detach().copy_(main_view)