__init__.py 5.89 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from apex.optimizers import FusedAdam as Adam
17
from apex.optimizers import FusedSGD as SGD
mohammad's avatar
mohammad committed
18

mohammad's avatar
mohammad committed
19
from megatron import get_args
20
from megatron.model import LayerNorm
mohammad's avatar
mohammad committed
21

22
from .distrib_optimizer import DistributedOptimizer
mohammad's avatar
mohammad committed
23
from .grad_scaler import ConstantGradScaler, DynamicGradScaler
24
from .optimizer import Float16OptimizerWithFloat16Params, FP32Optimizer
25

mohammad's avatar
mohammad committed
26

27
28
29
30
31
32
33
34
def get_param_groups(modules,
                     no_weight_decay_cond,
                     scale_lr_cond,
                     lr_mult):
    """creates param groups based on weight decay condition (regularized vs non regularized)
       and learning rate scale condition (args.lr vs lr_mult * args.lr)
       scale_lr_cond is used during finetuning where head of the network requires a scaled
       version of the base learning rate. 
mohammad's avatar
mohammad committed
35
    """
36
37
38
39
    wd_no_scale_lr = []
    wd_scale_lr = []
    no_wd_no_scale_lr = []
    no_wd_scale_lr = []
40
    for module in modules:
41
42
43
44
45
46
        for name, param in module.named_parameters():
            if not param.requires_grad:
                continue

            if no_weight_decay_cond is not None:
                no_wd = no_weight_decay_cond(name, param)
47
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
48
                # do not regularize biases nor Norm parameters
49
                no_wd = name.endswith(".bias") or len(param.shape) == 1
mohammad's avatar
mohammad committed
50

51
52
53
54
            if scale_lr_cond is not None:
                scale_lr = scale_lr_cond(name, param)
            else:
                scale_lr = False
mohammad's avatar
mohammad committed
55

56
57
58
59
60
61
62
63
            if not no_wd and not scale_lr:
                wd_no_scale_lr.append(param)
            elif not no_wd and scale_lr:
                wd_scale_lr.append(param)
            elif no_wd and not scale_lr:
                no_wd_no_scale_lr.append(param)
            else:
                no_wd_scale_lr.append(param)
mohammad's avatar
mohammad committed
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    param_groups = []
    if len(wd_no_scale_lr):
        param_groups.append({'params': wd_no_scale_lr, 'wd_mult': 1.0, 'lr_mult': 1.0})
    if len(wd_scale_lr):
        param_groups.append({'params': wd_scale_lr, 'wd_mult': 1.0, 'lr_mult': lr_mult})
    if len(no_wd_no_scale_lr):
        param_groups.append({'params': no_wd_no_scale_lr, 'wd_mult': 0.0, 'lr_mult': 1.0})
    if len(no_wd_scale_lr):
        param_groups.append({'params': no_wd_scale_lr, 'wd_mult': 0.0, 'lr_mult': lr_mult})

    return param_groups

def get_megatron_optimizer(model,
                           no_weight_decay_cond=None,
                           scale_lr_cond=None,
                           lr_mult=1.0):
mohammad's avatar
mohammad committed
81
82
83
    args = get_args()

    # Base optimizer.
84
85
86
87
88
    param_groups = get_param_groups(model,
                                    no_weight_decay_cond,
                                    scale_lr_cond,
                                    lr_mult)

89
    if args.optimizer == 'adam':
90
91
92
93
94
        optimizer = Adam(param_groups,
                         lr=args.lr,
                         weight_decay=args.weight_decay,
                         betas=(args.adam_beta1, args.adam_beta2),
                         eps=args.adam_eps)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
95
    elif args.optimizer == 'sgd':
96
97
98
99
        optimizer = SGD(param_groups,
                        lr=args.lr,
                        weight_decay=args.weight_decay,
                        momentum=args.sgd_momentum)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
100
101
    else:
        raise Exception('{} optimizer is not supported.'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
102
            args.optimizer))
mohammad's avatar
mohammad committed
103

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
104
105
106
107
108
    # Determine whether the params have main-grad field.
    params_have_main_grad = False
    if args.DDP_impl == 'local':
        params_have_main_grad = True

109
110
111
112
    # Mixed precision optimizer.
    # - Note: both the Float16Optimizer and the DistributedOptimizer inherit
    #   from the MixedPrecisionOptimizer, which manages any optimizer where
    #   the model params and main params are distinct.
113
    if args.fp16 or args.bf16 or args.use_distributed_optimizer:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
114
115
116
117
118
119
120
121

        # Grad scaler:
        #    if loss-scale is provided, instantiate the constant scaler.
        #    if we are using fp16 and loss-scale is not present, use a
        #       dynamic scaler.
        #    otherwise we are running in bf16 with no loss-scale so
        #       leave it as None.
        grad_scaler = None
122

mohammad's avatar
mohammad committed
123
124
125
        # Constant loss scale.
        if args.loss_scale:
            grad_scaler = ConstantGradScaler(args.loss_scale)
126

mohammad's avatar
mohammad committed
127
128
        # Dynamic loss scale.
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
129
130
131
132
133
134
135
136
137
            if args.fp16:
                grad_scaler = DynamicGradScaler(
                    initial_scale=args.initial_loss_scale,
                    min_scale=args.min_loss_scale,
                    growth_factor=2.0,
                    backoff_factor=0.5,
                    growth_interval=args.loss_scale_window,
                    hysteresis=args.hysteresis)

mohammad's avatar
mohammad committed
138
        # Megatron optimizer.
139
140
141
142
        opt_ty = DistributedOptimizer \
            if args.use_distributed_optimizer else \
            Float16OptimizerWithFloat16Params
        return opt_ty(optimizer,
143
144
145
146
147
                      args.clip_grad,
                      args.log_num_zeros_in_grad,
                      params_have_main_grad,
                      args.use_contiguous_buffers_in_local_ddp,
                      args.bf16,
148
149
                      grad_scaler,
                      model)
mohammad's avatar
mohammad committed
150
151

    # FP32.
152
153
154
155
156
    return FP32Optimizer(optimizer, args.clip_grad,
                         args.log_num_zeros_in_grad,
                         params_have_main_grad,
                         args.use_contiguous_buffers_in_local_ddp,
                         model)