__init__.py 3.49 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from apex.optimizers import FusedAdam as Adam
17
from apex.optimizers import FusedSGD as SGD
mohammad's avatar
mohammad committed
18

mohammad's avatar
mohammad committed
19
20
21
22
23
24
25
from megatron import get_args
from megatron.model import import_layernorm

from .grad_scaler import ConstantGradScaler, DynamicGradScaler
from .optimizer import FP16OptimizerWithFP16Params, FP32Optimizer


26
def _get_params_for_weight_decay_optimization(modules):
mohammad's avatar
mohammad committed
27
28
29
30
31
32
33
34
    """Divide params into with-weight-decay and without-weight-decay groups.
    Layernorms and baises will have no weight decay but the rest will.
    """
    args = get_args()
    LayerNorm = import_layernorm(args.fp32_residual_connection)

    weight_decay_params = {'params': []}
    no_weight_decay_params = {'params': [], 'weight_decay': 0.0}
35
36
37
38
39
40
41
42
43
44
45
46
47
    for module in modules:
        for module_ in module.modules():
            if isinstance(module_, LayerNorm):
                no_weight_decay_params['params'].extend(
                    [p for p in list(module_._parameters.values())
                     if p is not None])
            else:
                weight_decay_params['params'].extend(
                    [p for n, p in list(module_._parameters.items())
                     if p is not None and n != 'bias'])
                no_weight_decay_params['params'].extend(
                    [p for n, p in list(module_._parameters.items())
                     if p is not None and n == 'bias'])
mohammad's avatar
mohammad committed
48
49
50
51
52
53
54
55
56

    return weight_decay_params, no_weight_decay_params


def get_megatron_optimizer(model):
    args = get_args()

    # Base optimizer.
    param_groups = _get_params_for_weight_decay_optimization(model)
57
58
59
60
61
62
    if args.optimizer == 'adam':
        optimizer = Adam(param_groups,
                         lr=args.lr,
                         weight_decay=args.weight_decay,
                         betas=(args.adam_beta1, args.adam_beta2),
                         eps=args.adam_eps)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
    elif args.optimizer == 'sgd':
64
65
66
67
        optimizer = SGD(param_groups,
                        lr=args.lr,
                        weight_decay=args.weight_decay,
                        momentum=args.sgd_momentum)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
69
70
    else:
        raise Exception('{} optimizer is not supported.'.format(
                args.optimizer))
mohammad's avatar
mohammad committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    if args.fp16:
        # Constant loss scale.
        if args.loss_scale:
            grad_scaler = ConstantGradScaler(args.loss_scale)
        # Dynamic loss scale.
        else:
            grad_scaler = DynamicGradScaler(
                initial_scale=args.initial_loss_scale,
                min_scale=args.min_loss_scale,
                growth_factor=2.0,
                backoff_factor=0.5,
                growth_interval=args.loss_scale_window,
                hysteresis=args.hysteresis)
        # Megatron optimizer.
        return FP16OptimizerWithFP16Params(optimizer, grad_scaler,
87
                                           args.clip_grad, args.log_num_zeros_in_grad)
mohammad's avatar
mohammad committed
88
89

    # FP32.
90
    return FP32Optimizer(optimizer, args.clip_grad, args.log_num_zeros_in_grad)