__init__.py 6.29 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from apex.optimizers import FusedAdam as Adam
17
from apex.optimizers import FusedSGD as SGD
mohammad's avatar
mohammad committed
18

mohammad's avatar
mohammad committed
19
from megatron import get_args
20
from megatron.model import LayerNorm
mohammad's avatar
mohammad committed
21

22
# >>>
23
# from .distributed_fused_adam import DistributedFusedAdam
24
# <<<
mohammad's avatar
mohammad committed
25
from .grad_scaler import ConstantGradScaler, DynamicGradScaler
26
27
28
29
30
31
32
# >>>
from .optimizer import (
    Float16OptimizerWithFloat16Params,
    Float16DistributedOptimizer,
    FP32Optimizer,
)
# <<<
mohammad's avatar
mohammad committed
33

34
35
36
37
38
39
40
41
def get_param_groups(modules,
                     no_weight_decay_cond,
                     scale_lr_cond,
                     lr_mult):
    """creates param groups based on weight decay condition (regularized vs non regularized)
       and learning rate scale condition (args.lr vs lr_mult * args.lr)
       scale_lr_cond is used during finetuning where head of the network requires a scaled
       version of the base learning rate. 
mohammad's avatar
mohammad committed
42
    """
43
44
45
46
    wd_no_scale_lr = []
    wd_scale_lr = []
    no_wd_no_scale_lr = []
    no_wd_scale_lr = []
47
    for module in modules:
48
49
50
51
52
53
        for name, param in module.named_parameters():
            if not param.requires_grad:
                continue

            if no_weight_decay_cond is not None:
                no_wd = no_weight_decay_cond(name, param)
54
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
55
                # do not regularize biases nor Norm parameters
56
                no_wd = name.endswith(".bias") or len(param.shape) == 1
mohammad's avatar
mohammad committed
57

58
59
60
61
            if scale_lr_cond is not None:
                scale_lr = scale_lr_cond(name, param)
            else:
                scale_lr = False
mohammad's avatar
mohammad committed
62

63
64
65
66
67
68
69
70
            if not no_wd and not scale_lr:
                wd_no_scale_lr.append(param)
            elif not no_wd and scale_lr:
                wd_scale_lr.append(param)
            elif no_wd and not scale_lr:
                no_wd_no_scale_lr.append(param)
            else:
                no_wd_scale_lr.append(param)
mohammad's avatar
mohammad committed
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    param_groups = []
    if len(wd_no_scale_lr):
        param_groups.append({'params': wd_no_scale_lr, 'wd_mult': 1.0, 'lr_mult': 1.0})
    if len(wd_scale_lr):
        param_groups.append({'params': wd_scale_lr, 'wd_mult': 1.0, 'lr_mult': lr_mult})
    if len(no_wd_no_scale_lr):
        param_groups.append({'params': no_wd_no_scale_lr, 'wd_mult': 0.0, 'lr_mult': 1.0})
    if len(no_wd_scale_lr):
        param_groups.append({'params': no_wd_scale_lr, 'wd_mult': 0.0, 'lr_mult': lr_mult})

    return param_groups

def get_megatron_optimizer(model,
                           no_weight_decay_cond=None,
                           scale_lr_cond=None,
                           lr_mult=1.0):
mohammad's avatar
mohammad committed
88
89
90
    args = get_args()

    # Base optimizer.
91
92
93
94
95
    param_groups = get_param_groups(model,
                                    no_weight_decay_cond,
                                    scale_lr_cond,
                                    lr_mult)

Lawrence McAfee's avatar
Lawrence McAfee committed
96
97
98
99
100
101
102
103
104
105
106
107
    # >>>
    # from lutil import pax
    # pax(0, {
    #     "model" : model,
    #     "param_groups" : param_groups,
    #     "param_groups / 0" : param_groups[0],
    #     "param_groups / 0 / params" : param_groups[0]["params"],
    #     "param_groups / 1" : param_groups[1],
    #     "param_groups / 1 / params" : param_groups[1]["params"],
    # })
    # <<<

108
    # >>>
109
110
111
    # if args.use_distributed_optimizer:
    #     optimizer = DistributedFusedAdam(param_groups)
    # elif args.optimizer == 'adam':
112
    # <<<
113
    if args.optimizer == 'adam':
114
115
116
117
118
        optimizer = Adam(param_groups,
                         lr=args.lr,
                         weight_decay=args.weight_decay,
                         betas=(args.adam_beta1, args.adam_beta2),
                         eps=args.adam_eps)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
119
    elif args.optimizer == 'sgd':
120
121
122
123
        optimizer = SGD(param_groups,
                        lr=args.lr,
                        weight_decay=args.weight_decay,
                        momentum=args.sgd_momentum)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
124
125
    else:
        raise Exception('{} optimizer is not supported.'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126
            args.optimizer))
mohammad's avatar
mohammad committed
127

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    # Determine whether the params have main-grad field.
    params_have_main_grad = False
    if args.DDP_impl == 'local':
        params_have_main_grad = True

    if args.fp16 or args.bf16:

        # Grad scaler:
        #    if loss-scale is provided, instantiate the constant scaler.
        #    if we are using fp16 and loss-scale is not present, use a
        #       dynamic scaler.
        #    otherwise we are running in bf16 with no loss-scale so
        #       leave it as None.
        grad_scaler = None
mohammad's avatar
mohammad committed
142
143
144
145
146
        # Constant loss scale.
        if args.loss_scale:
            grad_scaler = ConstantGradScaler(args.loss_scale)
        # Dynamic loss scale.
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
147
148
149
150
151
152
153
154
155
            if args.fp16:
                grad_scaler = DynamicGradScaler(
                    initial_scale=args.initial_loss_scale,
                    min_scale=args.min_loss_scale,
                    growth_factor=2.0,
                    backoff_factor=0.5,
                    growth_interval=args.loss_scale_window,
                    hysteresis=args.hysteresis)

mohammad's avatar
mohammad committed
156
        # Megatron optimizer.
157
158
159
160
161
162
163
164
165
166
167
168
        # >>>
        opt_ty = Float16DistributedOptimizer \
            if args.use_distributed_optimizer \
            else Float16OptimizerWithFloat16Params
        return opt_ty(optimizer,
                      args.clip_grad,
                      args.log_num_zeros_in_grad,
                      params_have_main_grad,
                      args.use_contiguous_buffers_in_local_ddp,
                      args.bf16,
                      grad_scaler)
        # <<<
mohammad's avatar
mohammad committed
169
170

    # FP32.
171
172
173
174
175
176
177
178
179
    # >>>
    opt_ty = Float32DistributedOptimizer \
        if args.use_distributed_optimizer \
           else Float32Optimizer
    return opt_ty(optimizer, args.clip_grad,
                  args.log_num_zeros_in_grad,
                  params_have_main_grad,
                  args.use_contiguous_buffers_in_local_ddp)
    # <<<