preprocessing.py 22.7 KB
Newer Older
zihanl's avatar
zihanl committed
1

zihanl's avatar
zihanl committed
2
3
"""Preprocessing for Wizard of Wikipedia and Wizard of Internet datasets"""

root's avatar
root committed
4
import torch
zihanl's avatar
zihanl committed
5
6
7
import argparse
from nltk import word_tokenize
from tqdm import tqdm
zihanl's avatar
zihanl committed
8
9
import numpy as np
import json
zihanl's avatar
zihanl committed
10

root's avatar
root committed
11
def get_args():
zihanl's avatar
zihanl committed
12
13
    parser = argparse.ArgumentParser(description="Preprocessing")

root's avatar
root committed
14
    parser.add_argument("--func", type=str, default=None,
zihanl's avatar
zihanl committed
15
                        help="choose to run which function")
zihanl's avatar
zihanl committed
16
    parser.add_argument("--raw_file", type=str, default=None,
zihanl's avatar
zihanl committed
17
                        help="path of the input file")
zihanl's avatar
zihanl committed
18
19
20
21
22
23
24
25
    parser.add_argument("--processed_file", type=str, default=None,
                        help="path of the output file")
    parser.add_argument("--knwl_ref_file", type=str, default=None,
                        help="path of the knowledge reference file")
    parser.add_argument("--resp_ref_file", type=str, default=None,
                        help="path of the knowledge reference file")
    parser.add_argument("--knwl_gen_file", type=str, default=None,
                        help="path of the generated knowledge file")
root's avatar
root committed
26
    parser.add_argument("--test_file", type=str, default=None,
zihanl's avatar
zihanl committed
27
                        help="path of the test file")
root's avatar
root committed
28
    parser.add_argument("--train_file", type=str, default=None,
zihanl's avatar
zihanl committed
29
                        help="path of the train file")
root's avatar
root committed
30
    parser.add_argument("--model_file", type=str, default=None,
zihanl's avatar
zihanl committed
31
                        help="path of the model file")
root's avatar
root committed
32
    parser.add_argument("--data_type", type=str, default=None,
zihanl's avatar
zihanl committed
33
34
                        help="data types, choose one out of three types: \
                              wow_seen, wow_unseen, and woi")
root's avatar
root committed
35
    parser.add_argument("--seed", type=int, default=1234,
zihanl's avatar
zihanl committed
36
                        help="random seed")
zihanl's avatar
zihanl committed
37

root's avatar
root committed
38
39
    args = parser.parse_args()
    return args
zihanl's avatar
zihanl committed
40
41


zihanl's avatar
zihanl committed
42
def process_wow_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file):
zihanl's avatar
zihanl committed
43
    """
zihanl's avatar
zihanl committed
44
45
      This is a function used for processing the wizard of wikipedia (wow) dataset
      Expected processed format:
zihanl's avatar
zihanl committed
46
47
      topic \t dialogue context \t golden knowledge \t golden response
    """
zihanl's avatar
zihanl committed
48

zihanl's avatar
zihanl committed
49
    # loading the raw data
zihanl's avatar
zihanl committed
50
51
    print("> Loading data from %s" % raw_file)
    with open(raw_file, "r") as fr:
zihanl's avatar
zihanl committed
52
53
        dialog_data = json.load(fr)
    
root's avatar
root committed
54
    print("> Processing data ...")
zihanl's avatar
zihanl committed
55
56
57
58
59
    fproc = open(processed_file, "w")
    fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None
    fresp = open(resp_ref_file, "w") if resp_ref_file else None
    
    for i, sample in enumerate(tqdm(dialog_data)):
zihanl's avatar
zihanl committed
60
        # get all the dialog data for a single dialog sample
zihanl's avatar
zihanl committed
61
62
        dialog = sample["dialog"]
        
zihanl's avatar
zihanl committed
63
64
        turn_list = []  # collect the dialog history
        # processing for each single dialog sample
zihanl's avatar
zihanl committed
65
        for j, turn in enumerate(dialog):
zihanl's avatar
zihanl committed
66
            # text of each turn
zihanl's avatar
zihanl committed
67
68
69
            text = turn["text"]
            if not (text.endswith("?") or text.endswith(".") or text.endswith("!")):
                text = text + "."
zihanl's avatar
zihanl committed
70
            
zihanl's avatar
zihanl committed
71
72
            if j == 0:
                # first turn
zihanl's avatar
zihanl committed
73
                turn_list.append(text)
zihanl's avatar
zihanl committed
74
75
76
77
78
79
                continue

            speaker = turn["speaker"].lower()
            if "wizard" in speaker:
                checked_sentence = list(turn["checked_sentence"].values())  # knowledge
                checked_passage = list(turn["checked_passage"].values())    # topic
zihanl's avatar
zihanl committed
80
                
zihanl's avatar
zihanl committed
81
                assert len(checked_sentence) <= 1
zihanl's avatar
zihanl committed
82

zihanl's avatar
zihanl committed
83
84
85
86
87
                # get the ground truth knowledge
                if len(checked_sentence) > 0:
                    checked_sentence = checked_sentence[0]
                else:
                    checked_sentence = "no_passages_used"
zihanl's avatar
zihanl committed
88

zihanl's avatar
zihanl committed
89
90
91
92
                if len(checked_passage) == 1:
                    checked_passage = checked_passage[0]
                else:
                    checked_passage = "no_passages_used"
zihanl's avatar
zihanl committed
93

zihanl's avatar
zihanl committed
94
95
96
97
98
99
                # get the topic
                if checked_passage != "no_passages_used":
                    topic = checked_passage
                else:
                    topic = sample["chosen_topic"]
                
zihanl's avatar
zihanl committed
100
                dialog_context = " [SEP] ".join(turn_list)
zihanl's avatar
zihanl committed
101
102
                knowledge = checked_sentence
                response = text
zihanl's avatar
zihanl committed
103
104
105
                # add the response into the dialog history
                turn_list.append(response)

zihanl's avatar
zihanl committed
106
                # write to the output files
zihanl's avatar
zihanl committed
107
                fproc.write(topic + "\t" + dialog_context + "\t" + \
zihanl's avatar
zihanl committed
108
109
110
111
112
113
114
115
                                knowledge + "\t" + response + "\n")
                
                if fknwl:
                    fknwl.write(knowledge + "\n")
                if fresp:
                    # tokenize for evaluation
                    response = " ".join(word_tokenize(response))
                    fresp.write(response + "\n")
zihanl's avatar
zihanl committed
116

zihanl's avatar
zihanl committed
117
118
            else:
                assert "apprentice" in speaker
zihanl's avatar
zihanl committed
119
                turn_list.append(text)
zihanl's avatar
zihanl committed
120
121
122
123
124
125

    fproc.close()
    if fknwl:
        fknwl.close()
    if fresp:
        fresp.close()
zihanl's avatar
zihanl committed
126
127


zihanl's avatar
zihanl committed
128
def process_woi_dataset(raw_file, processed_file, knwl_ref_file, resp_ref_file):
zihanl's avatar
zihanl committed
129
130
131
132
133
    """
      This is a function used for processing the wizard of internet (woi) dataset
      Expected processed format:
      topic \t dialogue context \t golden knowledge \t golden response
    """
zihanl's avatar
zihanl committed
134
135
136
137
138
139
140
141
    
    print("> Processing %s" % raw_file)
    fproc = open(processed_file, "w")
    fknwl = open(knwl_ref_file, "w") if knwl_ref_file else None
    fresp = open(resp_ref_file, "w") if resp_ref_file else None
    
    with open(raw_file, "r") as fr:
        for i, line in tqdm(enumerate(fr)):
zihanl's avatar
zihanl committed
142
            # read line by line, each line uses json format
zihanl's avatar
zihanl committed
143
144
            line = line.strip()
            item_dict = json.loads(line)
zihanl's avatar
zihanl committed
145
146
147

            # item_dict is a dictionary
            # its key is the data id, and its value contains all the data content
zihanl's avatar
zihanl committed
148
            item_dict = item_dict.values()
zihanl's avatar
zihanl committed
149
            item_dict = list(item_dict)[0]  # len(item_dict) == 1
zihanl's avatar
zihanl committed
150
            
zihanl's avatar
zihanl committed
151
            # get the whole dialog data for a single dialog sample
zihanl's avatar
zihanl committed
152
153
154
            dialog_data = item_dict['dialog_history']
            length = len(dialog_data)
            
zihanl's avatar
zihanl committed
155
            turn_list = []  # collect the dialog history
zihanl's avatar
zihanl committed
156
157
158
159
            search_text = ""
            for i in range(length):
                item = dialog_data[i]
                action = item['action']
zihanl's avatar
zihanl committed
160

zihanl's avatar
zihanl committed
161
162
163
164
165
                if action == "Wizard => SearchAgent":
                    search_text = item['text']

                elif action == "Wizard => Apprentice":
                    if len(turn_list) == 0:
zihanl's avatar
zihanl committed
166
                        # first turn
zihanl's avatar
zihanl committed
167
168
                        turn = item['text']
                        turn_list.append(turn)
zihanl's avatar
zihanl committed
169
170
171
172
173
174
175
176
177
178
179
                        continue

                    # get the relevant content
                    contents = item["context"]["contents"]
                    selects = item["context"]["selected_contents"]
                    flag = selects[0][0]
                    selects = selects[1:]
                    assert len(selects) == len(contents)
                    
                    # get the topic
                    if flag:
zihanl's avatar
zihanl committed
180
                        # no knowledge sentence is used for the response
zihanl's avatar
zihanl committed
181
                        topic = "no_topic"
zihanl's avatar
zihanl committed
182
                        knwl_sent = "no_passages_used"
zihanl's avatar
zihanl committed
183
                    else:
zihanl's avatar
zihanl committed
184
                        # we consider the search text as the topic
zihanl's avatar
zihanl committed
185
                        topic = search_text
zihanl's avatar
zihanl committed
186
187
                        # get the knowledge sentence
                        knwl_sent = ""
zihanl's avatar
zihanl committed
188
189
190
191
192
                        for content, select in zip(contents, selects):
                            content = content['content']
                            assert len(content) == len(select)
                            for c, s in zip(content, select):
                                if s:
zihanl's avatar
zihanl committed
193
194
195
196
197
                                    knwl_sent = c
                                    break

                    if knwl_sent == "":
                        # no knowledge is used for the response
zihanl's avatar
zihanl committed
198
                        topic = "no_topic"
zihanl's avatar
zihanl committed
199
                        knwl_sent = "no_passages_used"
zihanl's avatar
zihanl committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

                    # get dialogue context, knowledge, and response 
                    dialog_context = " [SEP] ".join(turn_list)
                    response = item['text']

                    # processing
                    topic = topic.replace("\n", "").replace("\r", \
                                "").replace("\t", "")
                    dialog_context = dialog_context.replace("\n", "").replace("\r", \
                                "").replace("\t", "")
                    knwl_sent = knwl_sent.replace("\n", "").replace("\r", \
                                "").replace("\t", "")
                    response = response.replace("\n", "").replace("\r", \
                                "").replace("\t", "")
                    
                    if topic != "no_topic":
                        # write to the ouput files
                        fproc.write(topic + "\t" + dialog_context + "\t" + \
                                        knwl_sent + "\t" + response + "\n")
                        if fknwl:
                            fknwl.write(knwl_sent + "\n")
                        if fresp:
                            # tokenize for evaluation
                            response = " ".join(word_tokenize(response))
                            fresp.write(response + "\n")

                    turn_list.append(response)

                elif action == "Apprentice => Wizard":
                    turn = item['text']
                    turn_list.append(turn)

                else:
zihanl's avatar
zihanl committed
233
234
                    assert action == "SearchAgent => Wizard", \
                            "Please check whether you have used the correct data!"
zihanl's avatar
zihanl committed
235
236
237
238
239
240

    fproc.close()
    if fknwl:
        fknwl.close()
    if fresp:
        fresp.close()
zihanl's avatar
zihanl committed
241
242


root's avatar
root committed
243
244
def get_database(test_datapath, train_datapath, data_type):
    """Get the database by topics"""
zihanl's avatar
zihanl committed
245

zihanl's avatar
zihanl committed
246
247
    assert data_type in ["wow_seen", "wow_unseen", "woi"], \
                "Please input a correct data type!!"
zihanl's avatar
zihanl committed
248
249

    # get test data topic dictionary
zihanl's avatar
zihanl committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    print("> reading test data from %s" % test_datapath)
    test_topics = {}
    with open(test_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            topic = splits[0]
            test_topics[topic] = True

    print("> reading data from %s" % train_datapath)
    train_data_by_topic = {}
    dialog_data_by_topic = {}
    dialog_examples = []
    with open(train_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            topic = splits[0]
            turns = splits[1].split(" [SEP] ")[-3:]
            knowledge = splits[2]
            response = splits[3]
root's avatar
root committed
271
            # filtering data samples
zihanl's avatar
zihanl committed
272
273
            if knowledge == "no_passages_used":
                continue
root's avatar
root committed
274
275
276
277
278
            if data_type != "wow_seen" and ("(" in knowledge or ")" in knowledge):
                continue
            if data_type != "wow_seen" and topic not in knowledge:
                continue

zihanl's avatar
zihanl committed
279
280
            # get the instance
            last_turn = turns[-1]
root's avatar
root committed
281
282
            if data_type == "woi":
                instance = "( " + last_turn + " ) " + topic + " => " + knowledge
zihanl's avatar
zihanl committed
283
284
285
            
            # construct dialog example
            dialog_example = ""
root's avatar
root committed
286
287
288
289
290
            if data_type != "wow_seen":
                dialog_example += "( " + topic + " ) "
            for i, turn in enumerate(turns):
                if i != 0:
                    dialog_example += " "
zihanl's avatar
zihanl committed
291
                dialog_example += turn
root's avatar
root committed
292
            
zihanl's avatar
zihanl committed
293
294
295
296
297
298
299
300
301
302
303
            # check overlaps
            if topic in test_topics:
                if topic not in train_data_by_topic:
                    train_data_by_topic[topic] = [instance]
                else:
                    train_data_by_topic[topic].append(instance)
                
                if topic not in dialog_data_by_topic:
                    dialog_data_by_topic[topic] = [dialog_example]
                else:
                    dialog_data_by_topic[topic].append(dialog_example)
root's avatar
root committed
304
305
306
307
308
309
310
311
312
313
            
            else:
                # filtering data samples
                if len(knowledge.split()) > 20:
                    # knowledge is too long
                    continue
                if knowledge.startswith("It") or knowledge.startswith("it") or \
                   knowledge.startswith("This") or knowledge.startswith("this"):
                    continue
                
zihanl's avatar
zihanl committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
            # append all the data into dialogue examples list
            dialog_examples.append((topic, dialog_example, instance))

    return train_data_by_topic, dialog_data_by_topic, dialog_examples


emb_dict = {}
def select_prompts_based_on_similarity(
        query, dialog_list, prompt_list, topic, tokenizer, encoder, topk):
    """Select samples based on the similarity"""

    with torch.no_grad():
        # get the query embeddings
        query_ids = tokenizer.encode(query)
        query_ids = torch.LongTensor([query_ids]).cuda()
        query_emb = encoder(input_ids=query_ids).pooler_output
        query_emb = query_emb[0]
        
        # calculate embeddings for the samples in the database
        if topic in emb_dict:
            example_embeddings = emb_dict[topic]
            example_embeddings = example_embeddings.cuda()
        else:
            for idx, example in enumerate(dialog_list):
                example_ids = tokenizer.encode(example)
                example_ids = torch.LongTensor([example_ids]).cuda()
                example_emb = encoder(input_ids=example_ids).pooler_output
                if idx == 0:
                    example_embeddings = example_emb
                else:
                    example_embeddings = torch.cat(
                        (example_embeddings, example_emb), dim=0)
            emb_dict[topic] = example_embeddings.cpu()

        # compare the similarity and select the topk samples
        similarity_list = example_embeddings.matmul(query_emb)
        _, indices = torch.topk(similarity_list, k=topk)
    
    indices = indices.tolist()
    indices = indices[::-1] # reverse the order
    selected_prompts = []
    for index in indices:
        # index = index.item()
        selected_prompts.append(prompt_list[index])

    return selected_prompts


def prompt_selection_for_knowledge_generation(
root's avatar
root committed
363
        test_datapath, train_datapath, model_path, output_prompt_path, data_type):
zihanl's avatar
zihanl committed
364
365
366
367
368
    """Selecting prompts for the knowledge generation"""

    print("> Selecting prompts for the knowledge generation")

    train_data_by_topic, dialog_data_by_topic, dialog_examples = \
root's avatar
root committed
369
                            get_database(test_datapath, train_datapath, data_type)
zihanl's avatar
zihanl committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    
    from transformers import DPRQuestionEncoderTokenizer
    print("> loading tokenizer and encoder")
    tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
                    'facebook/dpr-question_encoder-single-nq-base')
    encoder = torch.load(model_path).cuda()

    print("> getting dialog embeddings")
    with torch.no_grad():
        for idx, example in tqdm(enumerate(dialog_examples)):
            dialog = example[1]
            dialog_ids = tokenizer.encode(dialog)
            dialog_ids = torch.LongTensor([dialog_ids]).cuda()
            dialog_emb = encoder(input_ids=dialog_ids).pooler_output

            if idx == 0:
                dialog_embeddings = dialog_emb
            else:
                dialog_embeddings = torch.cat((dialog_embeddings, dialog_emb), dim=0)

    print("> reading test data from %s" % test_datapath)
    prompt_list_for_each_sample = []
    with open(test_datapath, "r") as f:
        for i, line in tqdm(enumerate(f)):
            line = line.strip()

            splits = line.split("\t")
            topic = splits[0]
            turns = splits[1].split(" [SEP] ")[-3:]

root's avatar
root committed
400
401
402
403
404
405
406
407
            # get the query sentence
            query_sent = ""
            if data_type != "seen":
                query_sent += "( " + topic + " ) "
            for i, turn in enumerate(turns):
                if i != 0:
                    query_sent += " "
                query_sent += turn
zihanl's avatar
zihanl committed
408

root's avatar
root committed
409
            if topic not in train_data_by_topic:
zihanl's avatar
zihanl committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
                # get the query embedding
                query_ids = tokenizer.encode(query_sent)
                query_ids = torch.LongTensor([query_ids]).cuda()
                query_emb = encoder(input_ids=query_ids).pooler_output
                query_emb = query_emb[0]

                # calculate the similarity
                similarity_list = dialog_embeddings.matmul(query_emb)
                _, indices = torch.sort(similarity_list)
                indices = indices.tolist()
                selected_topics = {}
                selected_prompts = []
                num_prompt = 0
                for index in indices:
                    example = dialog_examples[index]
                    topic_temp = example[0]
                    if topic_temp not in selected_topics:
                        selected_topics[topic_temp] = True
                        selected_prompts.append(example[2])
                        num_prompt += 1
                        if num_prompt == 10:
                            break
                
                # get the selected samples
                example_list = selected_prompts[::-1]
                key = topic + " " + turns[-1]
                prompt_list_for_each_sample.append({key: example_list})

            else:
                num_data_sample = min(len(train_data_by_topic[topic]), 10)
                total_example_list = train_data_by_topic[topic]
root's avatar
root committed
441
                
zihanl's avatar
zihanl committed
442
                dialog_list = dialog_data_by_topic[topic]
root's avatar
root committed
443
                assert len(dialog_list) == len(train_data_by_topic[topic])
zihanl's avatar
zihanl committed
444
445

                # calculate the similarity
root's avatar
root committed
446
                example_list = select_prompts_based_on_similarity(
zihanl's avatar
zihanl committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
                                query_sent, dialog_list, total_example_list, 
                                topic, tokenizer, encoder, topk=num_data_sample)
                
                key = topic + " " + turns[-1]
                prompt_list_for_each_sample.append({key: example_list})

    print("writing to %s" % output_prompt_path)
    with open(output_prompt_path, "w") as f:
        for instance in tqdm(prompt_list_for_each_sample):
            json.dump(instance, f)
            f.write("\n")


def prompt_selection_for_response_generation(input_path, output_path, seed):
    """Selecting prompts for the response generation"""

    print("> Selecting prompts for the response generation")
    print("> set random seed")
    np.random.seed(seed)

    prompt_example_list = []
    print("> reading data from %s" % input_path)
    with open(input_path, "r") as f:
        for i, line in tqdm(enumerate(f)):
            line = line.strip()
            splits = line.split("\t")

            # get the topic, context, knowledge and response
            topic = splits[0]
            dialog_context = splits[1]
            knowledge = splits[2]
            response = splits[3]
            turns = dialog_context.split(" [SEP] ")[-3:]
            if knowledge == "no_passages_used":
                continue

            # calculate the overlap ratio
            from nltk import word_tokenize
            knowledge_sent_token_list = word_tokenize(knowledge)
            knowledge_sent_token_dict = {token: True for token in knowledge_sent_token_list}
root's avatar
root committed
487
488
            knowledge_len = len(knowledge_sent_token_list)
            response_token_list = word_tokenize(response)
zihanl's avatar
zihanl committed
489
490
            response_len = len(response_token_list)
            num_overlap_token = 0
root's avatar
root committed
491
            accumulator = 0
zihanl's avatar
zihanl committed
492
493
            for token in response_token_list:
                if token in knowledge_sent_token_dict:
root's avatar
root committed
494
495
496
497
498
499
500
                    accumulator += 1
                else:
                    if accumulator >= 10:
                        num_overlap_token += accumulator
                    accumulator = 0
            if accumulator >= 10:
                num_overlap_token += accumulator
zihanl's avatar
zihanl committed
501
502
503
504
            
            # filtering the data based on the ratio
            if num_overlap_token > response_len * 0.9 or num_overlap_token < response_len * 0.6:
                continue
root's avatar
root committed
505
506
507
508
509
510
            if num_overlap_token < knowledge_len * 0.8:
                continue
            
            last_turn = " ".join(word_tokenize(turns[-1]))
            knowledge = " ".join(word_tokenize(knowledge))
            response = " ".join(word_tokenize(response))
zihanl's avatar
zihanl committed
511
512
513
            prompt_example = ""
            # add dialog context
            prompt_example += "Topic: " + topic + ". "
root's avatar
root committed
514
            prompt_example += "User says: " + last_turn + " "
zihanl's avatar
zihanl committed
515
516
517
518
519
            prompt_example += "We know that: " + knowledge + " "
            prompt_example += "System replies: " + response
            
            prompt_example_list.append(prompt_example)
        
root's avatar
root committed
520
    # shuffle the prompt examples
zihanl's avatar
zihanl committed
521
522
523
524
525
526
527
528
529
530
    np.random.shuffle(prompt_example_list)
    
    print("> writing to %s" % output_path)
    with open(output_path, "w") as f:
        # f.write("Generate the System's response based on the knowledge sentence:\n")
        for i in tqdm(range(20)):
            example = prompt_example_list[i]
            f.write(example + "\n")


zihanl's avatar
zihanl committed
531
def prepare_input_for_response_generation(test_file, knwl_gen_file, processed_file):
zihanl's avatar
zihanl committed
532
533
    """Preparing inputs for the response generation"""

zihanl's avatar
zihanl committed
534
    print("> Reading knowledge file from %s" % knwl_gen_file)
zihanl's avatar
zihanl committed
535
    # get the knowledge list
zihanl's avatar
zihanl committed
536
    with open(knwl_gen_file, "r") as f:
zihanl's avatar
zihanl committed
537
538
        knowledge_list = f.readlines()
    
root's avatar
root committed
539
    print("> Processing ...")
zihanl's avatar
zihanl committed
540
    with open(test_file, "r") as fr:
zihanl's avatar
zihanl committed
541
        with open(processed_file, "w") as fw:
zihanl's avatar
zihanl committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
            for line_num, line in enumerate(tqdm(fr)):
                line = line.strip()
                splits = line.split("\t")
                # prepare topic, context, knowledge and response
                topic = splits[0]
                dialog_context = splits[1]
                response = splits[3]
                knowledge = knowledge_list[line_num]
                knowledge = knowledge.strip()
                if "<|endoftext|>" in knowledge:
                    knowledge = knowledge.replace("<|endoftext|>", "")

                # write to the output file
                fw.write(topic + "\t" + dialog_context + "\t" \
                                     + knowledge + "\t" + response + "\n")

zihanl's avatar
zihanl committed
558
559
560

if __name__ == "__main__":

root's avatar
root committed
561
562
    args = get_args()
    if args.func == "process_wow_dataset":
zihanl's avatar
zihanl committed
563
        process_wow_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file)
zihanl's avatar
zihanl committed
564

root's avatar
root committed
565
    elif args.func == "process_woi_dataset":
zihanl's avatar
zihanl committed
566
        process_woi_dataset(args.raw_file, args.processed_file, args.knwl_ref_file, args.resp_ref_file)
zihanl's avatar
zihanl committed
567

root's avatar
root committed
568
    elif args.func == "get_knwl_gen_prompts":
zihanl's avatar
zihanl committed
569
        prompt_selection_for_knowledge_generation(
root's avatar
root committed
570
            args.test_file, args.train_file, args.model_file, 
zihanl's avatar
zihanl committed
571
            args.processed_file, args.data_type)
root's avatar
root committed
572
573
    
    elif args.func == "get_resp_gen_prompts":
zihanl's avatar
zihanl committed
574
        prompt_selection_for_response_generation(
zihanl's avatar
zihanl committed
575
            args.train_file, args.processed_file, args.seed)
zihanl's avatar
zihanl committed
576

root's avatar
root committed
577
    elif args.func == "prepare_input":
zihanl's avatar
zihanl committed
578
        prepare_input_for_response_generation(
zihanl's avatar
zihanl committed
579
            args.test_file, args.knwl_gen_file, args.processed_file)