preprocessing.py 19.3 KB
Newer Older
zihanl's avatar
zihanl committed
1

zihanl's avatar
zihanl committed
2
3
"""Preprocessing for Wizard of Wikipedia and Wizard of Internet datasets"""

zihanl's avatar
zihanl committed
4
5
6
import argparse
from nltk import word_tokenize
from tqdm import tqdm
zihanl's avatar
zihanl committed
7
8
import numpy as np
import json
zihanl's avatar
zihanl committed
9
10
11
12

def get_params():
    parser = argparse.ArgumentParser(description="Preprocessing")

zihanl's avatar
zihanl committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    parser.add_argument("--func", type=str, default="",
                        help="choose to run which function")
    parser.add_argument("--input_file", type=str, default="",
                        help="path of the input file")
    parser.add_argument("--knowledge_file", type=str, default="",
                        help="path of the knowledge file")
    parser.add_argument("--test_file", type=str, default="",
                        help="path of the test file")
    parser.add_argument("--train_file", type=str, default="",
                        help="path of the train file")
    parser.add_argument("--output_file", type=str, default="",
                        help="path of the output file")
    parser.add_argument("--model_file", type=str, default="",
                        help="path of the model file")
    parser.add_argument("--seed", type=int, default=123456,
                        help="random seed")
zihanl's avatar
zihanl committed
29
30
31
32
33
34
35

    params = parser.parse_args()
    return params


def process_wow_dataset(input_file, output_file):
    """
zihanl's avatar
zihanl committed
36
37
      This is a function used for processing the wizard of wikipedia (wow) dataset
      Expected processed format:
zihanl's avatar
zihanl committed
38
39
      topic \t dialogue context \t golden knowledge \t golden response
    """
zihanl's avatar
zihanl committed
40

zihanl's avatar
zihanl committed
41
42
43
44
45
    with open(input_file, "r") as fr:
        dialog_data = json.load(fr)
    
    with open(output_file, "w") as fw:
        for i, sample in enumerate(tqdm(dialog_data)):
zihanl's avatar
zihanl committed
46
            # get all the dialog data for a single sample
zihanl's avatar
zihanl committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            dialog = sample["dialog"]
            
            context = []
            for j, turn in enumerate(dialog):
                text = turn["text"]
                if not (text.endswith("?") or text.endswith(".") or text.endswith("!")):
                    text = text + " ."
                text = " ".join(word_tokenize(text))
                
                if j == 0:
                    # first turn
                    context.append(text)
                    continue

                speaker = turn["speaker"].lower()
                if "wizard" in speaker:
                    checked_sentence = list(turn["checked_sentence"].values())  # knowledge
                    checked_passage = list(turn["checked_passage"].values())    # topic
                    
                    assert len(checked_sentence) <= 1

zihanl's avatar
zihanl committed
68
                    # get the ground truth knowledge
zihanl's avatar
zihanl committed
69
70
71
72
73
74
75
76
77
78
                    if len(checked_sentence) > 0:
                        checked_sentence = checked_sentence[0]
                    else:
                        checked_sentence = "no_passages_used"

                    if len(checked_passage) == 1:
                        checked_passage = checked_passage[0]
                    else:
                        checked_passage = "no_passages_used"

zihanl's avatar
zihanl committed
79
                    # get the topic
zihanl's avatar
zihanl committed
80
81
82
83
84
                    if checked_passage != "no_passages_used":
                        topic = checked_passage
                    else:
                        topic = sample["chosen_topic"]
                    
zihanl's avatar
zihanl committed
85
86
87
                    # write to the output file
                    fw.write(topic + "\t" + " [SEP] ".join(context) + "\t" + \
                                checked_sentence + "\t" + text + "\n")
zihanl's avatar
zihanl committed
88
89
90
91
92
93
94
95
                    context.append(text)

                else:
                    assert "apprentice" in speaker
                    context.append(text)


def process_woi_dataset(input_file, output_file):
zihanl's avatar
zihanl committed
96
97
98
99
100
101
    """
      This is a function used for processing the wizard of internet (woi) dataset
      Expected processed format:
      topic \t dialogue context \t golden knowledge \t golden response
    """

zihanl's avatar
zihanl committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    with open(output_path, "w") as fw:
        with open(input_path, "r") as fr:
            for i, line in tqdm(enumerate(fr)):
                line = line.strip()
                item_dict = json.loads(line)
                item_dict = item_dict.values()
                assert len(item_dict) == 1
                item_dict = list(item_dict)[0]
                
                dialog_data = item_dict['dialog_history']
                length = len(dialog_data)
                
                turn_list = []
                search_text = ""
                for i in range(length):
                    item = dialog_data[i]
                    action = item['action']

                    if action == "Wizard => SearchAgent":
                        search_text = item['text']

                    elif action == "Wizard => Apprentice":
                        if len(turn_list) == 0:
                            turn = item['text']
                            turn_list.append(turn)
                            continue

zihanl's avatar
zihanl committed
129
                        # get the relevant content
zihanl's avatar
zihanl committed
130
131
132
133
134
135
                        contents = item["context"]["contents"]
                        selects = item["context"]["selected_contents"]
                        flag = selects[0][0]
                        selects = selects[1:]
                        assert len(selects) == len(contents)
                        
zihanl's avatar
zihanl committed
136
                        # get the topic
zihanl's avatar
zihanl committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
                        if flag:
                            # no knowledge sentence is used
                            topic = "no_topic"
                            sent_list = ["no_passages_used"]
                        else:
                            # assert search_text != ""
                            topic = search_text

                            sent_list = []
                            for content, select in zip(contents, selects):
                                content = content['content']
                                assert len(content) == len(select)
                                for c, s in zip(content, select):
                                    if s:
                                        sent_list.append(c)
                        if len(sent_list) == 0:
                            topic = "no_topic"
                            sent_list = ["no_passages_used"]
zihanl's avatar
zihanl committed
155
156

                        # get dialogue context, knowledge, and response 
zihanl's avatar
zihanl committed
157
158
159
160
                        dialog_context = " [SEP] ".join(turn_list)
                        knwl_sent = sent_list[0]
                        response = item['text']

zihanl's avatar
zihanl committed
161
162
163
164
165
166
167
168
169
                        # processing
                        topic = topic.replace("\n", "").replace("\r", \
                                    "").replace("\t", "")
                        dialog_context = dialog_context.replace("\n", "").replace("\r", \
                                    "").replace("\t", "")
                        knwl_sent = knwl_sent.replace("\n", "").replace("\r", \
                                    "").replace("\t", "")
                        response = response.replace("\n", "").replace("\r", \
                                    "").replace("\t", "")
zihanl's avatar
zihanl committed
170
                        
zihanl's avatar
zihanl committed
171
                        # write to the ouput file
zihanl's avatar
zihanl committed
172
                        if topic != "no_topic":
zihanl's avatar
zihanl committed
173
174
                            fw.write(topic + "\t" + dialog_context + "\t" + \
                                     knwl_sent + "\t" + response + "\n")
zihanl's avatar
zihanl committed
175
176
177
178
179
180
181
182
183
184
185

                        turn_list.append(response)

                    elif action == "Apprentice => Wizard":
                        turn = item['text']
                        turn_list.append(turn)

                    else:
                        assert action == "SearchAgent => Wizard"


zihanl's avatar
zihanl committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
def get_database(test_datapath, train_datapath):
    """Get the database sorted by topics"""

    # get test data topic list
    print("> reading test data from %s" % test_datapath)
    test_topics = {}
    with open(test_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            topic = splits[0]
            test_topics[topic] = True

    print("> reading data from %s" % train_datapath)
    train_data_by_topic = {}
    dialog_data_by_topic = {}
    dialog_examples = []
    with open(train_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            topic = splits[0]
            turns = splits[1].split(" [SEP] ")[-3:]
            knowledge = splits[2]
            response = splits[3]
            if knowledge == "no_passages_used":
                continue
            
            # get the instance
            last_turn = turns[-1]
            instance = "( " + last_turn + " ) " + topic + " => " + knowledge
            
            # construct dialog example
            dialog_example = ""
            dialog_example += "( " + topic + " )"
            for turn in turns:
                dialog_example += " "
                dialog_example += turn

            # check overlaps
            if topic in test_topics:
                if topic not in train_data_by_topic:
                    train_data_by_topic[topic] = [instance]
                else:
                    train_data_by_topic[topic].append(instance)
                
                if topic not in dialog_data_by_topic:
                    dialog_data_by_topic[topic] = [dialog_example]
                else:
                    dialog_data_by_topic[topic].append(dialog_example)

            # append all the data into dialogue examples list
            dialog_examples.append((topic, dialog_example, instance))

    return train_data_by_topic, dialog_data_by_topic, dialog_examples


emb_dict = {}
def select_prompts_based_on_similarity(
        query, dialog_list, prompt_list, topic, tokenizer, encoder, topk):
    """Select samples based on the similarity"""

    with torch.no_grad():
        # get the query embeddings
        query_ids = tokenizer.encode(query)
        query_ids = torch.LongTensor([query_ids]).cuda()
        query_emb = encoder(input_ids=query_ids).pooler_output
        query_emb = query_emb[0]
        
        # calculate embeddings for the samples in the database
        if topic in emb_dict:
            example_embeddings = emb_dict[topic]
            example_embeddings = example_embeddings.cuda()
        else:
            for idx, example in enumerate(dialog_list):
                example_ids = tokenizer.encode(example)
                example_ids = torch.LongTensor([example_ids]).cuda()
                example_emb = encoder(input_ids=example_ids).pooler_output
                if idx == 0:
                    example_embeddings = example_emb
                else:
                    example_embeddings = torch.cat(
                        (example_embeddings, example_emb), dim=0)
            emb_dict[topic] = example_embeddings.cpu()

        # compare the similarity and select the topk samples
        similarity_list = example_embeddings.matmul(query_emb)
        _, indices = torch.topk(similarity_list, k=topk)
    
    indices = indices.tolist()
    indices = indices[::-1] # reverse the order
    selected_prompts = []
    for index in indices:
        # index = index.item()
        selected_prompts.append(prompt_list[index])

    return selected_prompts


def prompt_selection_for_knowledge_generation(
        test_datapath, train_datapath, model_path, output_prompt_path):
    """Selecting prompts for the knowledge generation"""

    print("> Selecting prompts for the knowledge generation")

    train_data_by_topic, dialog_data_by_topic, dialog_examples = \
                            get_database(test_datapath, train_datapath)
    
    from transformers import DPRQuestionEncoderTokenizer
    print("> loading tokenizer and encoder")
    tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
                    'facebook/dpr-question_encoder-single-nq-base')
    encoder = torch.load(model_path).cuda()

    print("> getting dialog embeddings")
    with torch.no_grad():
        for idx, example in tqdm(enumerate(dialog_examples)):
            dialog = example[1]
            dialog_ids = tokenizer.encode(dialog)
            dialog_ids = torch.LongTensor([dialog_ids]).cuda()
            dialog_emb = encoder(input_ids=dialog_ids).pooler_output

            if idx == 0:
                dialog_embeddings = dialog_emb
            else:
                dialog_embeddings = torch.cat((dialog_embeddings, dialog_emb), dim=0)

    print("> reading test data from %s" % test_datapath)
    count_out_of_list = 0
    prompt_list_for_each_sample = []
    with open(test_datapath, "r") as f:
        for i, line in tqdm(enumerate(f)):
            line = line.strip()

            splits = line.split("\t")
            topic = splits[0]
            turns = splits[1].split(" [SEP] ")[-3:]

            if topic not in train_data_by_topic:
                count_out_of_list += 1

                # calculate similarity
                # get the query embedding
                query_sent = ""
                query_sent += "( " + topic + " )"
                for turn in turns:
                    query_sent += " "
                    query_sent += turn
                query_ids = tokenizer.encode(query_sent)
                query_ids = torch.LongTensor([query_ids]).cuda()
                query_emb = encoder(input_ids=query_ids).pooler_output
                query_emb = query_emb[0]

                # calculate the similarity
                similarity_list = dialog_embeddings.matmul(query_emb)
                _, indices = torch.sort(similarity_list)
                indices = indices.tolist()
                selected_topics = {}
                selected_prompts = []
                num_prompt = 0
                for index in indices:
                    example = dialog_examples[index]
                    topic_temp = example[0]
                    if topic_temp not in selected_topics:
                        selected_topics[topic_temp] = True
                        selected_prompts.append(example[2])
                        num_prompt += 1
                        if num_prompt == 10:
                            break
                
                # get the selected samples
                example_list = selected_prompts[::-1]
                key = topic + " " + turns[-1]
                prompt_list_for_each_sample.append({key: example_list})

            else:
                num_data_sample = min(len(train_data_by_topic[topic]), 10)
                total_example_list = train_data_by_topic[topic]
                # query_sent
                query_sent = ""
                query_sent += "( " + topic + " )"
                for turn in turns:
                    query_sent += " "
                    query_sent += turn

                dialog_list = dialog_data_by_topic[topic]
                assert len(dialog_list) == num_data_sample

                # calculate the similarity
                selected_examples = select_prompts_based_on_similarity(
                                query_sent, dialog_list, total_example_list, 
                                topic, tokenizer, encoder, topk=num_data_sample)
                example_list = selected_examples
                
                key = topic + " " + turns[-1]
                prompt_list_for_each_sample.append({key: example_list})

    print("writing to %s" % output_prompt_path)
    with open(output_prompt_path, "w") as f:
        for instance in tqdm(prompt_list_for_each_sample):
            json.dump(instance, f)
            f.write("\n")


def prompt_selection_for_response_generation(input_path, output_path, seed):
    """Selecting prompts for the response generation"""

    print("> Selecting prompts for the response generation")
    print("> set random seed")
    np.random.seed(seed)

    prompt_example_list = []
    print("> reading data from %s" % input_path)
    with open(input_path, "r") as f:
        for i, line in tqdm(enumerate(f)):
            line = line.strip()
            splits = line.split("\t")

            # get the topic, context, knowledge and response
            topic = splits[0]
            dialog_context = splits[1]
            knowledge = splits[2]
            response = splits[3]
            turns = dialog_context.split(" [SEP] ")[-3:]
            if knowledge == "no_passages_used":
                continue

            # calculate the overlap ratio
            from nltk import word_tokenize
            knowledge_sent_token_list = word_tokenize(knowledge)
            knowledge_sent_token_dict = {token: True for token in knowledge_sent_token_list}
            response_token_list = response.split()
            response_len = len(response_token_list)
            num_overlap_token = 0
            for token in response_token_list:
                if token in knowledge_sent_token_dict:
                    num_overlap_token += 1
            
            # filtering the data based on the ratio
            if num_overlap_token > response_len * 0.9 or num_overlap_token < response_len * 0.6:
                continue

            prompt_example = ""
            # add dialog context
            prompt_example += "Topic: " + topic + ". "
            prompt_example += "User says: " + turns[-1] + " "
            prompt_example += "We know that: " + knowledge + " "
            prompt_example += "System replies: " + response
            
            prompt_example_list.append(prompt_example)
        
    print("> shuffle the prompt examples (total %d)" % len(prompt_example_list))
    np.random.shuffle(prompt_example_list)

    print("> Prompt example:")
    print(prompt_example_list[0])
    
    print("> writing to %s" % output_path)
    with open(output_path, "w") as f:
        # f.write("Generate the System's response based on the knowledge sentence:\n")
        for i in tqdm(range(20)):
            example = prompt_example_list[i]
            f.write(example + "\n")


def prepare_input_for_response_generation(test_file, knowledge_file, output_file):
    """Preparing inputs for the response generation"""

    # get the knowledge list
    with open(knowledge_file, "r") as f:
        knowledge_list = f.readlines()
    
    with open(test_file, "r") as fr:
        with open(output_file, "w") as fw:
            for line_num, line in enumerate(tqdm(fr)):
                line = line.strip()
                splits = line.split("\t")
                # prepare topic, context, knowledge and response
                topic = splits[0]
                dialog_context = splits[1]
                response = splits[3]
                knowledge = knowledge_list[line_num]
                knowledge = knowledge.strip()
                if "<|endoftext|>" in knowledge:
                    knowledge = knowledge.replace("<|endoftext|>", "")

                # write to the output file
                fw.write(topic + "\t" + dialog_context + "\t" \
                                     + knowledge + "\t" + response + "\n")

zihanl's avatar
zihanl committed
476
477
478
479
480
481
482
483
484

if __name__ == "__main__":

    params = get_params()
    if params.func == "process_wow_dataset":
        process_wow_dataset(params.input_file, params.output_file)

    elif params.func == "process_woi_dataset":
        process_woi_dataset(params.input_file, params.output_file)
zihanl's avatar
zihanl committed
485
486
487
488
489
490
491
492
493
494

    elif params.func == "get_prompts":
        prompt_selection_for_knowledge_generation(
            params.test_file, params.train_file, params.model_file, params.output_file)
        prompt_selection_for_response_generation(
            params.train_file, params.output_file, params.seed)

    elif params.func == "prepare_input":
        prepare_input_for_response_generation(
            params.test_file, params.knowledge_file, params.output_file)