"tests/test_ray_marching.py" did not exist on "a761160362b4b24134ab374b98e5d6f3ef0e39fa"
preprocessing.py 20.8 KB
Newer Older
zihanl's avatar
zihanl committed
1

zihanl's avatar
zihanl committed
2
3
"""Preprocessing for Wizard of Wikipedia and Wizard of Internet datasets"""

root's avatar
root committed
4
import torch
zihanl's avatar
zihanl committed
5
6
7
import argparse
from nltk import word_tokenize
from tqdm import tqdm
zihanl's avatar
zihanl committed
8
9
import numpy as np
import json
zihanl's avatar
zihanl committed
10

root's avatar
root committed
11
def get_args():
zihanl's avatar
zihanl committed
12
13
    parser = argparse.ArgumentParser(description="Preprocessing")

root's avatar
root committed
14
    parser.add_argument("--func", type=str, default=None,
zihanl's avatar
zihanl committed
15
                        help="choose to run which function")
root's avatar
root committed
16
    parser.add_argument("--input_file", type=str, default=None,
zihanl's avatar
zihanl committed
17
                        help="path of the input file")
root's avatar
root committed
18
    parser.add_argument("--knowledge_file", type=str, default=None,
zihanl's avatar
zihanl committed
19
                        help="path of the knowledge file")
root's avatar
root committed
20
    parser.add_argument("--test_file", type=str, default=None,
zihanl's avatar
zihanl committed
21
                        help="path of the test file")
root's avatar
root committed
22
    parser.add_argument("--train_file", type=str, default=None,
zihanl's avatar
zihanl committed
23
                        help="path of the train file")
root's avatar
root committed
24
    parser.add_argument("--output_file", type=str, default=None,
zihanl's avatar
zihanl committed
25
                        help="path of the output file")
root's avatar
root committed
26
    parser.add_argument("--model_file", type=str, default=None,
zihanl's avatar
zihanl committed
27
                        help="path of the model file")
root's avatar
root committed
28
29
30
    parser.add_argument("--data_type", type=str, default=None,
                        help="data types (wow_seen, wow_unseen, or woi)")
    parser.add_argument("--seed", type=int, default=1234,
zihanl's avatar
zihanl committed
31
                        help="random seed")
zihanl's avatar
zihanl committed
32

root's avatar
root committed
33
34
    args = parser.parse_args()
    return args
zihanl's avatar
zihanl committed
35
36
37
38


def process_wow_dataset(input_file, output_file):
    """
zihanl's avatar
zihanl committed
39
40
      This is a function used for processing the wizard of wikipedia (wow) dataset
      Expected processed format:
zihanl's avatar
zihanl committed
41
42
      topic \t dialogue context \t golden knowledge \t golden response
    """
zihanl's avatar
zihanl committed
43

root's avatar
root committed
44
    print("> Loading data from %s" % input_file)
zihanl's avatar
zihanl committed
45
46
47
    with open(input_file, "r") as fr:
        dialog_data = json.load(fr)
    
root's avatar
root committed
48
    print("> Processing data ...")
zihanl's avatar
zihanl committed
49
50
    with open(output_file, "w") as fw:
        for i, sample in enumerate(tqdm(dialog_data)):
zihanl's avatar
zihanl committed
51
            # get all the dialog data for a single sample
zihanl's avatar
zihanl committed
52
53
54
55
56
57
            dialog = sample["dialog"]
            
            context = []
            for j, turn in enumerate(dialog):
                text = turn["text"]
                if not (text.endswith("?") or text.endswith(".") or text.endswith("!")):
root's avatar
root committed
58
                    text = text + "."
zihanl's avatar
zihanl committed
59
60
61
62
63
64
65
66
67
68
69
70
71
                
                if j == 0:
                    # first turn
                    context.append(text)
                    continue

                speaker = turn["speaker"].lower()
                if "wizard" in speaker:
                    checked_sentence = list(turn["checked_sentence"].values())  # knowledge
                    checked_passage = list(turn["checked_passage"].values())    # topic
                    
                    assert len(checked_sentence) <= 1

zihanl's avatar
zihanl committed
72
                    # get the ground truth knowledge
zihanl's avatar
zihanl committed
73
74
75
76
77
78
79
80
81
82
                    if len(checked_sentence) > 0:
                        checked_sentence = checked_sentence[0]
                    else:
                        checked_sentence = "no_passages_used"

                    if len(checked_passage) == 1:
                        checked_passage = checked_passage[0]
                    else:
                        checked_passage = "no_passages_used"

zihanl's avatar
zihanl committed
83
                    # get the topic
zihanl's avatar
zihanl committed
84
85
86
87
88
                    if checked_passage != "no_passages_used":
                        topic = checked_passage
                    else:
                        topic = sample["chosen_topic"]
                    
zihanl's avatar
zihanl committed
89
90
91
                    # write to the output file
                    fw.write(topic + "\t" + " [SEP] ".join(context) + "\t" + \
                                checked_sentence + "\t" + text + "\n")
zihanl's avatar
zihanl committed
92
93
94
95
96
97
98
99
                    context.append(text)

                else:
                    assert "apprentice" in speaker
                    context.append(text)


def process_woi_dataset(input_file, output_file):
zihanl's avatar
zihanl committed
100
101
102
103
104
105
    """
      This is a function used for processing the wizard of internet (woi) dataset
      Expected processed format:
      topic \t dialogue context \t golden knowledge \t golden response
    """

root's avatar
root committed
106
107
108
    print("> Processing %s" % input_file)
    with open(output_file, "w") as fw:
        with open(input_file, "r") as fr:
zihanl's avatar
zihanl committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            for i, line in tqdm(enumerate(fr)):
                line = line.strip()
                item_dict = json.loads(line)
                item_dict = item_dict.values()
                assert len(item_dict) == 1
                item_dict = list(item_dict)[0]
                
                dialog_data = item_dict['dialog_history']
                length = len(dialog_data)
                
                turn_list = []
                search_text = ""
                for i in range(length):
                    item = dialog_data[i]
                    action = item['action']

                    if action == "Wizard => SearchAgent":
                        search_text = item['text']

                    elif action == "Wizard => Apprentice":
                        if len(turn_list) == 0:
                            turn = item['text']
                            turn_list.append(turn)
                            continue

zihanl's avatar
zihanl committed
134
                        # get the relevant content
zihanl's avatar
zihanl committed
135
136
137
138
139
140
                        contents = item["context"]["contents"]
                        selects = item["context"]["selected_contents"]
                        flag = selects[0][0]
                        selects = selects[1:]
                        assert len(selects) == len(contents)
                        
zihanl's avatar
zihanl committed
141
                        # get the topic
zihanl's avatar
zihanl committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
                        if flag:
                            # no knowledge sentence is used
                            topic = "no_topic"
                            sent_list = ["no_passages_used"]
                        else:
                            # assert search_text != ""
                            topic = search_text

                            sent_list = []
                            for content, select in zip(contents, selects):
                                content = content['content']
                                assert len(content) == len(select)
                                for c, s in zip(content, select):
                                    if s:
                                        sent_list.append(c)
                        if len(sent_list) == 0:
                            topic = "no_topic"
                            sent_list = ["no_passages_used"]
zihanl's avatar
zihanl committed
160
161

                        # get dialogue context, knowledge, and response 
zihanl's avatar
zihanl committed
162
163
164
165
                        dialog_context = " [SEP] ".join(turn_list)
                        knwl_sent = sent_list[0]
                        response = item['text']

zihanl's avatar
zihanl committed
166
167
168
169
170
171
172
173
174
                        # processing
                        topic = topic.replace("\n", "").replace("\r", \
                                    "").replace("\t", "")
                        dialog_context = dialog_context.replace("\n", "").replace("\r", \
                                    "").replace("\t", "")
                        knwl_sent = knwl_sent.replace("\n", "").replace("\r", \
                                    "").replace("\t", "")
                        response = response.replace("\n", "").replace("\r", \
                                    "").replace("\t", "")
zihanl's avatar
zihanl committed
175
                        
zihanl's avatar
zihanl committed
176
                        # write to the ouput file
zihanl's avatar
zihanl committed
177
                        if topic != "no_topic":
zihanl's avatar
zihanl committed
178
179
                            fw.write(topic + "\t" + dialog_context + "\t" + \
                                     knwl_sent + "\t" + response + "\n")
zihanl's avatar
zihanl committed
180
181
182
183
184
185
186
187
188
189
190

                        turn_list.append(response)

                    elif action == "Apprentice => Wizard":
                        turn = item['text']
                        turn_list.append(turn)

                    else:
                        assert action == "SearchAgent => Wizard"


root's avatar
root committed
191
192
def get_database(test_datapath, train_datapath, data_type):
    """Get the database by topics"""
zihanl's avatar
zihanl committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    # get test data topic list
    print("> reading test data from %s" % test_datapath)
    test_topics = {}
    with open(test_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            topic = splits[0]
            test_topics[topic] = True

    print("> reading data from %s" % train_datapath)
    train_data_by_topic = {}
    dialog_data_by_topic = {}
    dialog_examples = []
    with open(train_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            topic = splits[0]
            turns = splits[1].split(" [SEP] ")[-3:]
            knowledge = splits[2]
            response = splits[3]
root's avatar
root committed
216
            # filtering data samples
zihanl's avatar
zihanl committed
217
218
            if knowledge == "no_passages_used":
                continue
root's avatar
root committed
219
220
221
222
223
            if data_type != "wow_seen" and ("(" in knowledge or ")" in knowledge):
                continue
            if data_type != "wow_seen" and topic not in knowledge:
                continue

zihanl's avatar
zihanl committed
224
225
            # get the instance
            last_turn = turns[-1]
root's avatar
root committed
226
227
228
229
            if data_type == "woi":
                instance = "( " + last_turn + " ) " + topic + " -> " + knowledge
            else:
                instance = "( " + last_turn + " ) " + topic + " => " + knowledge
zihanl's avatar
zihanl committed
230
231
232
            
            # construct dialog example
            dialog_example = ""
root's avatar
root committed
233
234
235
236
237
            if data_type != "wow_seen":
                dialog_example += "( " + topic + " ) "
            for i, turn in enumerate(turns):
                if i != 0:
                    dialog_example += " "
zihanl's avatar
zihanl committed
238
                dialog_example += turn
root's avatar
root committed
239
            
zihanl's avatar
zihanl committed
240
241
242
243
244
245
246
247
248
249
250
            # check overlaps
            if topic in test_topics:
                if topic not in train_data_by_topic:
                    train_data_by_topic[topic] = [instance]
                else:
                    train_data_by_topic[topic].append(instance)
                
                if topic not in dialog_data_by_topic:
                    dialog_data_by_topic[topic] = [dialog_example]
                else:
                    dialog_data_by_topic[topic].append(dialog_example)
root's avatar
root committed
251
252
253
254
255
256
257
258
259
260
            
            else:
                # filtering data samples
                if len(knowledge.split()) > 20:
                    # knowledge is too long
                    continue
                if knowledge.startswith("It") or knowledge.startswith("it") or \
                   knowledge.startswith("This") or knowledge.startswith("this"):
                    continue
                
zihanl's avatar
zihanl committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            # append all the data into dialogue examples list
            dialog_examples.append((topic, dialog_example, instance))

    return train_data_by_topic, dialog_data_by_topic, dialog_examples


emb_dict = {}
def select_prompts_based_on_similarity(
        query, dialog_list, prompt_list, topic, tokenizer, encoder, topk):
    """Select samples based on the similarity"""

    with torch.no_grad():
        # get the query embeddings
        query_ids = tokenizer.encode(query)
        query_ids = torch.LongTensor([query_ids]).cuda()
        query_emb = encoder(input_ids=query_ids).pooler_output
        query_emb = query_emb[0]
        
        # calculate embeddings for the samples in the database
        if topic in emb_dict:
            example_embeddings = emb_dict[topic]
            example_embeddings = example_embeddings.cuda()
        else:
            for idx, example in enumerate(dialog_list):
                example_ids = tokenizer.encode(example)
                example_ids = torch.LongTensor([example_ids]).cuda()
                example_emb = encoder(input_ids=example_ids).pooler_output
                if idx == 0:
                    example_embeddings = example_emb
                else:
                    example_embeddings = torch.cat(
                        (example_embeddings, example_emb), dim=0)
            emb_dict[topic] = example_embeddings.cpu()

        # compare the similarity and select the topk samples
        similarity_list = example_embeddings.matmul(query_emb)
        _, indices = torch.topk(similarity_list, k=topk)
    
    indices = indices.tolist()
    indices = indices[::-1] # reverse the order
    selected_prompts = []
    for index in indices:
        # index = index.item()
        selected_prompts.append(prompt_list[index])

    return selected_prompts


def prompt_selection_for_knowledge_generation(
root's avatar
root committed
310
        test_datapath, train_datapath, model_path, output_prompt_path, data_type):
zihanl's avatar
zihanl committed
311
312
313
314
315
    """Selecting prompts for the knowledge generation"""

    print("> Selecting prompts for the knowledge generation")

    train_data_by_topic, dialog_data_by_topic, dialog_examples = \
root's avatar
root committed
316
                            get_database(test_datapath, train_datapath, data_type)
zihanl's avatar
zihanl committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    
    from transformers import DPRQuestionEncoderTokenizer
    print("> loading tokenizer and encoder")
    tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(
                    'facebook/dpr-question_encoder-single-nq-base')
    encoder = torch.load(model_path).cuda()

    print("> getting dialog embeddings")
    with torch.no_grad():
        for idx, example in tqdm(enumerate(dialog_examples)):
            dialog = example[1]
            dialog_ids = tokenizer.encode(dialog)
            dialog_ids = torch.LongTensor([dialog_ids]).cuda()
            dialog_emb = encoder(input_ids=dialog_ids).pooler_output

            if idx == 0:
                dialog_embeddings = dialog_emb
            else:
                dialog_embeddings = torch.cat((dialog_embeddings, dialog_emb), dim=0)

    print("> reading test data from %s" % test_datapath)
    prompt_list_for_each_sample = []
    with open(test_datapath, "r") as f:
        for i, line in tqdm(enumerate(f)):
            line = line.strip()

            splits = line.split("\t")
            topic = splits[0]
            turns = splits[1].split(" [SEP] ")[-3:]

root's avatar
root committed
347
348
349
350
351
352
353
354
            # get the query sentence
            query_sent = ""
            if data_type != "seen":
                query_sent += "( " + topic + " ) "
            for i, turn in enumerate(turns):
                if i != 0:
                    query_sent += " "
                query_sent += turn
zihanl's avatar
zihanl committed
355

root's avatar
root committed
356
            if topic not in train_data_by_topic:
zihanl's avatar
zihanl committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
                # get the query embedding
                query_ids = tokenizer.encode(query_sent)
                query_ids = torch.LongTensor([query_ids]).cuda()
                query_emb = encoder(input_ids=query_ids).pooler_output
                query_emb = query_emb[0]

                # calculate the similarity
                similarity_list = dialog_embeddings.matmul(query_emb)
                _, indices = torch.sort(similarity_list)
                indices = indices.tolist()
                selected_topics = {}
                selected_prompts = []
                num_prompt = 0
                for index in indices:
                    example = dialog_examples[index]
                    topic_temp = example[0]
                    if topic_temp not in selected_topics:
                        selected_topics[topic_temp] = True
                        selected_prompts.append(example[2])
                        num_prompt += 1
                        if num_prompt == 10:
                            break
                
                # get the selected samples
                example_list = selected_prompts[::-1]
                key = topic + " " + turns[-1]
                prompt_list_for_each_sample.append({key: example_list})

            else:
                num_data_sample = min(len(train_data_by_topic[topic]), 10)
                total_example_list = train_data_by_topic[topic]
root's avatar
root committed
388
                
zihanl's avatar
zihanl committed
389
                dialog_list = dialog_data_by_topic[topic]
root's avatar
root committed
390
                assert len(dialog_list) == len(train_data_by_topic[topic])
zihanl's avatar
zihanl committed
391
392

                # calculate the similarity
root's avatar
root committed
393
                example_list = select_prompts_based_on_similarity(
zihanl's avatar
zihanl committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
                                query_sent, dialog_list, total_example_list, 
                                topic, tokenizer, encoder, topk=num_data_sample)
                
                key = topic + " " + turns[-1]
                prompt_list_for_each_sample.append({key: example_list})

    print("writing to %s" % output_prompt_path)
    with open(output_prompt_path, "w") as f:
        for instance in tqdm(prompt_list_for_each_sample):
            json.dump(instance, f)
            f.write("\n")


def prompt_selection_for_response_generation(input_path, output_path, seed):
    """Selecting prompts for the response generation"""

    print("> Selecting prompts for the response generation")
    print("> set random seed")
    np.random.seed(seed)

    prompt_example_list = []
    print("> reading data from %s" % input_path)
    with open(input_path, "r") as f:
        for i, line in tqdm(enumerate(f)):
            line = line.strip()
            splits = line.split("\t")

            # get the topic, context, knowledge and response
            topic = splits[0]
            dialog_context = splits[1]
            knowledge = splits[2]
            response = splits[3]
            turns = dialog_context.split(" [SEP] ")[-3:]
            if knowledge == "no_passages_used":
                continue

            # calculate the overlap ratio
            from nltk import word_tokenize
            knowledge_sent_token_list = word_tokenize(knowledge)
            knowledge_sent_token_dict = {token: True for token in knowledge_sent_token_list}
root's avatar
root committed
434
435
            knowledge_len = len(knowledge_sent_token_list)
            response_token_list = word_tokenize(response)
zihanl's avatar
zihanl committed
436
437
            response_len = len(response_token_list)
            num_overlap_token = 0
root's avatar
root committed
438
            accumulator = 0
zihanl's avatar
zihanl committed
439
440
            for token in response_token_list:
                if token in knowledge_sent_token_dict:
root's avatar
root committed
441
442
443
444
445
446
447
                    accumulator += 1
                else:
                    if accumulator >= 10:
                        num_overlap_token += accumulator
                    accumulator = 0
            if accumulator >= 10:
                num_overlap_token += accumulator
zihanl's avatar
zihanl committed
448
449
450
451
            
            # filtering the data based on the ratio
            if num_overlap_token > response_len * 0.9 or num_overlap_token < response_len * 0.6:
                continue
root's avatar
root committed
452
453
454
455
456
457
            if num_overlap_token < knowledge_len * 0.8:
                continue
            
            last_turn = " ".join(word_tokenize(turns[-1]))
            knowledge = " ".join(word_tokenize(knowledge))
            response = " ".join(word_tokenize(response))
zihanl's avatar
zihanl committed
458
459
460
            prompt_example = ""
            # add dialog context
            prompt_example += "Topic: " + topic + ". "
root's avatar
root committed
461
            prompt_example += "User says: " + last_turn + " "
zihanl's avatar
zihanl committed
462
463
464
465
466
            prompt_example += "We know that: " + knowledge + " "
            prompt_example += "System replies: " + response
            
            prompt_example_list.append(prompt_example)
        
root's avatar
root committed
467
468
    # shuffle the prompt examples
    print("length: %d" % len(prompt_example_list))
zihanl's avatar
zihanl committed
469
470
471
472
473
474
475
476
477
478
479
480
481
    np.random.shuffle(prompt_example_list)
    
    print("> writing to %s" % output_path)
    with open(output_path, "w") as f:
        # f.write("Generate the System's response based on the knowledge sentence:\n")
        for i in tqdm(range(20)):
            example = prompt_example_list[i]
            f.write(example + "\n")


def prepare_input_for_response_generation(test_file, knowledge_file, output_file):
    """Preparing inputs for the response generation"""

root's avatar
root committed
482
    print("> Reading knowledge file from %s" % knowledge_file)
zihanl's avatar
zihanl committed
483
484
485
486
    # get the knowledge list
    with open(knowledge_file, "r") as f:
        knowledge_list = f.readlines()
    
root's avatar
root committed
487
    print("> Processing ...")
zihanl's avatar
zihanl committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    with open(test_file, "r") as fr:
        with open(output_file, "w") as fw:
            for line_num, line in enumerate(tqdm(fr)):
                line = line.strip()
                splits = line.split("\t")
                # prepare topic, context, knowledge and response
                topic = splits[0]
                dialog_context = splits[1]
                response = splits[3]
                knowledge = knowledge_list[line_num]
                knowledge = knowledge.strip()
                if "<|endoftext|>" in knowledge:
                    knowledge = knowledge.replace("<|endoftext|>", "")

                # write to the output file
                fw.write(topic + "\t" + dialog_context + "\t" \
                                     + knowledge + "\t" + response + "\n")

zihanl's avatar
zihanl committed
506
507
508

if __name__ == "__main__":

root's avatar
root committed
509
510
511
    args = get_args()
    if args.func == "process_wow_dataset":
        process_wow_dataset(args.input_file, args.output_file)
zihanl's avatar
zihanl committed
512

root's avatar
root committed
513
514
    elif args.func == "process_woi_dataset":
        process_woi_dataset(args.input_file, args.output_file)
zihanl's avatar
zihanl committed
515

root's avatar
root committed
516
    elif args.func == "get_knwl_gen_prompts":
zihanl's avatar
zihanl committed
517
        prompt_selection_for_knowledge_generation(
root's avatar
root committed
518
519
520
521
            args.test_file, args.train_file, args.model_file, 
            args.output_file, args.data_type)
    
    elif args.func == "get_resp_gen_prompts":
zihanl's avatar
zihanl committed
522
        prompt_selection_for_response_generation(
root's avatar
root committed
523
            args.train_file, args.output_file, args.seed)
zihanl's avatar
zihanl committed
524

root's avatar
root committed
525
    elif args.func == "prepare_input":
zihanl's avatar
zihanl committed
526
        prepare_input_for_response_generation(
root's avatar
root committed
527
            args.test_file, args.knowledge_file, args.output_file)