__init__.py 6.16 KB
Newer Older
mohammad's avatar
mohammad committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from apex.optimizers import FusedAdam as Adam
17
from apex.optimizers import FusedSGD as SGD
mohammad's avatar
mohammad committed
18

mohammad's avatar
mohammad committed
19
from megatron import get_args
20
from megatron.model import LayerNorm
mohammad's avatar
mohammad committed
21

22
# >>>
23
# from .distributed_fused_adam import DistributedFusedAdam
Lawrence McAfee's avatar
Lawrence McAfee committed
24
from lutil import pax, tp
25
# <<<
mohammad's avatar
mohammad committed
26
from .grad_scaler import ConstantGradScaler, DynamicGradScaler
27
28
29
30
31
32
33
# >>>
from .optimizer import (
    Float16OptimizerWithFloat16Params,
    Float16DistributedOptimizer,
    FP32Optimizer,
)
# <<<
mohammad's avatar
mohammad committed
34

35
36
37
38
39
40
41
42
def get_param_groups(modules,
                     no_weight_decay_cond,
                     scale_lr_cond,
                     lr_mult):
    """creates param groups based on weight decay condition (regularized vs non regularized)
       and learning rate scale condition (args.lr vs lr_mult * args.lr)
       scale_lr_cond is used during finetuning where head of the network requires a scaled
       version of the base learning rate. 
mohammad's avatar
mohammad committed
43
    """
44
45
46
47
    wd_no_scale_lr = []
    wd_scale_lr = []
    no_wd_no_scale_lr = []
    no_wd_scale_lr = []
48
    for module in modules:
49
50
51
52
53
54
        for name, param in module.named_parameters():
            if not param.requires_grad:
                continue

            if no_weight_decay_cond is not None:
                no_wd = no_weight_decay_cond(name, param)
55
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
56
                # do not regularize biases nor Norm parameters
57
                no_wd = name.endswith(".bias") or len(param.shape) == 1
mohammad's avatar
mohammad committed
58

59
60
61
62
            if scale_lr_cond is not None:
                scale_lr = scale_lr_cond(name, param)
            else:
                scale_lr = False
mohammad's avatar
mohammad committed
63

64
65
66
67
68
69
70
71
            if not no_wd and not scale_lr:
                wd_no_scale_lr.append(param)
            elif not no_wd and scale_lr:
                wd_scale_lr.append(param)
            elif no_wd and not scale_lr:
                no_wd_no_scale_lr.append(param)
            else:
                no_wd_scale_lr.append(param)
mohammad's avatar
mohammad committed
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    param_groups = []
    if len(wd_no_scale_lr):
        param_groups.append({'params': wd_no_scale_lr, 'wd_mult': 1.0, 'lr_mult': 1.0})
    if len(wd_scale_lr):
        param_groups.append({'params': wd_scale_lr, 'wd_mult': 1.0, 'lr_mult': lr_mult})
    if len(no_wd_no_scale_lr):
        param_groups.append({'params': no_wd_no_scale_lr, 'wd_mult': 0.0, 'lr_mult': 1.0})
    if len(no_wd_scale_lr):
        param_groups.append({'params': no_wd_scale_lr, 'wd_mult': 0.0, 'lr_mult': lr_mult})

    return param_groups

def get_megatron_optimizer(model,
                           no_weight_decay_cond=None,
                           scale_lr_cond=None,
                           lr_mult=1.0):
mohammad's avatar
mohammad committed
89
90
91
    args = get_args()

    # Base optimizer.
92
93
94
95
96
    param_groups = get_param_groups(model,
                                    no_weight_decay_cond,
                                    scale_lr_cond,
                                    lr_mult)

Lawrence McAfee's avatar
Lawrence McAfee committed
97
    # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
98
    # params = [ p for m in model for p in m.parameters() ]
Lawrence McAfee's avatar
Lawrence McAfee committed
99
    # pax(0, {
Lawrence McAfee's avatar
Lawrence McAfee committed
100
    #     "params" : [ (p.tensor_model_parallel, tp(p)) for p in params ],
Lawrence McAfee's avatar
Lawrence McAfee committed
101
102
103
    # })
    # <<<

104
    # >>>
105
106
107
    # if args.use_distributed_optimizer:
    #     optimizer = DistributedFusedAdam(param_groups)
    # elif args.optimizer == 'adam':
108
    # <<<
109
    if args.optimizer == 'adam':
110
111
112
113
114
        optimizer = Adam(param_groups,
                         lr=args.lr,
                         weight_decay=args.weight_decay,
                         betas=(args.adam_beta1, args.adam_beta2),
                         eps=args.adam_eps)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
115
    elif args.optimizer == 'sgd':
116
117
118
119
        optimizer = SGD(param_groups,
                        lr=args.lr,
                        weight_decay=args.weight_decay,
                        momentum=args.sgd_momentum)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
120
121
    else:
        raise Exception('{} optimizer is not supported.'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122
            args.optimizer))
mohammad's avatar
mohammad committed
123

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    # Determine whether the params have main-grad field.
    params_have_main_grad = False
    if args.DDP_impl == 'local':
        params_have_main_grad = True

    if args.fp16 or args.bf16:

        # Grad scaler:
        #    if loss-scale is provided, instantiate the constant scaler.
        #    if we are using fp16 and loss-scale is not present, use a
        #       dynamic scaler.
        #    otherwise we are running in bf16 with no loss-scale so
        #       leave it as None.
        grad_scaler = None
mohammad's avatar
mohammad committed
138
139
140
141
142
        # Constant loss scale.
        if args.loss_scale:
            grad_scaler = ConstantGradScaler(args.loss_scale)
        # Dynamic loss scale.
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
143
144
145
146
147
148
149
150
151
            if args.fp16:
                grad_scaler = DynamicGradScaler(
                    initial_scale=args.initial_loss_scale,
                    min_scale=args.min_loss_scale,
                    growth_factor=2.0,
                    backoff_factor=0.5,
                    growth_interval=args.loss_scale_window,
                    hysteresis=args.hysteresis)

mohammad's avatar
mohammad committed
152
        # Megatron optimizer.
153
154
155
156
157
158
159
160
161
162
        # >>>
        opt_ty = Float16DistributedOptimizer \
            if args.use_distributed_optimizer \
            else Float16OptimizerWithFloat16Params
        return opt_ty(optimizer,
                      args.clip_grad,
                      args.log_num_zeros_in_grad,
                      params_have_main_grad,
                      args.use_contiguous_buffers_in_local_ddp,
                      args.bf16,
163
164
                      grad_scaler,
                      model)
165
        # <<<
mohammad's avatar
mohammad committed
166
167

    # FP32.
168
169
170
171
172
173
174
175
176
    # >>>
    opt_ty = Float32DistributedOptimizer \
        if args.use_distributed_optimizer \
           else Float32Optimizer
    return opt_ty(optimizer, args.clip_grad,
                  args.log_num_zeros_in_grad,
                  params_have_main_grad,
                  args.use_contiguous_buffers_in_local_ddp)
    # <<<