bert_model.py 17.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

18
19
import pickle

Neel Kant's avatar
Neel Kant committed
20
import numpy as np
21
import torch
22
import torch.nn.functional as F
23

Mohammad's avatar
Mohammad committed
24
from megatron import get_args
Neel Kant's avatar
Neel Kant committed
25
from megatron.data.realm_index import detach
26
27
28
29
30
31
32
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
from megatron.model.transformer import LayerNorm
from megatron.model.utils import openai_gelu
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from megatron.module import MegatronModule


def bert_attention_mask_func(attention_scores, attention_mask):
    attention_scores = attention_scores + attention_mask
    return attention_scores


def bert_extended_attention_mask(attention_mask, dtype):
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)
    # Since attention_mask is 1.0 for positions we want to attend and 0.0
    # for masked positions, this operation will create a tensor which is
    # 0.0 for positions we want to attend and -10000.0 for masked positions.
    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    # fp16 compatibility
    extended_attention_mask = extended_attention_mask.to(dtype=dtype)
    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

    return extended_attention_mask


def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
81
        parallel_output: whether output logits being distributed or not.
82
    """
Neel Kant's avatar
Neel Kant committed
83

84
85
86
87
88
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

89
        args = get_args()
Neel Kant's avatar
Neel Kant committed
90

91
92
        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
93
94
        self.bias.partition_dim = 0
        self.bias.stride = 1
95
96
97
98
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
99
100
101
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
102
103
104

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
105
        hidden_states = self.gelu(hidden_states)
106
107
108
109
110
111
112
113
114
115
116
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


class BertModel(MegatronModule):
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
117
    def __init__(self, num_tokentypes=2, add_binary_head=True,
Neel Kant's avatar
Neel Kant committed
118
                 ict_head_size=None, parallel_output=True):
119
        super(BertModel, self).__init__()
Mohammad's avatar
Mohammad committed
120
        args = get_args()
121
122

        self.add_binary_head = add_binary_head
123
124
125
126
        self.ict_head_size = ict_head_size
        self.add_ict_head = ict_head_size is not None
        assert not (self.add_binary_head and self.add_ict_head)

127
        self.parallel_output = parallel_output
Mohammad's avatar
Mohammad committed
128
        init_method = init_method_normal(args.init_method_std)
129
        add_pooler = self.add_binary_head or self.add_ict_head
Mohammad's avatar
Mohammad committed
130
131
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
Neel Kant's avatar
Neel Kant committed
132
133
134
135
136

        max_pos_embeds = None
        if not add_binary_head and ict_head_size is None:
            max_pos_embeds = 2 * args.seq_length

137
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
138
            attention_mask_func=bert_attention_mask_func,
139
            num_tokentypes=num_tokentypes,
140
            add_pooler=add_pooler,
141
            init_method=init_method,
Neel Kant's avatar
Neel Kant committed
142
143
            scaled_init_method=scaled_init_method,
            max_pos_embeds=max_pos_embeds)
144

Neel Kant's avatar
Neel Kant committed
145
146
147
        if not self.add_ict_head:
            self.lm_head = BertLMHead(
                self.language_model.embedding.word_embeddings.weight.size(0),
Neel Kant's avatar
Neel Kant committed
148
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
Neel Kant's avatar
Neel Kant committed
149
            self._lm_head_key = 'lm_head'
150
        if self.add_binary_head:
Mohammad's avatar
Mohammad committed
151
152
            self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                init_method)
153
            self._binary_head_key = 'binary_head'
154
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
155
            self.ict_head = get_linear_layer(args.hidden_size, ict_head_size, init_method)
156
            self._ict_head_key = 'ict_head'
157

158
    def forward(self, input_ids, attention_mask, tokentype_ids=None):
159
160
161
162
163

        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

164
        if self.add_binary_head or self.add_ict_head:
165
166
167
168
169
170
171
172
173
174
175
176
177
            lm_output, pooled_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)
        else:
            lm_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)

        # Output.
Neel Kant's avatar
Neel Kant committed
178
179
180
181
        if self.add_ict_head:
            ict_logits = self.ict_head(pooled_output)
            return ict_logits, None

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        lm_logits = self.lm_head(
            lm_output, self.language_model.embedding.word_embeddings.weight)
        if self.add_binary_head:
            binary_logits = self.binary_head(pooled_output)
            return lm_logits, binary_logits

        return lm_logits, None

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
199
200
201
202
        if not self.add_ict_head:
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
203
204
205
        if self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
206
207
208
        elif self.add_ict_head:
            state_dict_[self._ict_head_key] \
                = self.ict_head.state_dict(destination, prefix, keep_vars)
209
210
211
212
213
214
215
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
216
217
218
        if not self.add_ict_head:
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
219
        if self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
220
221
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
222
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
223
224
            self.ict_head.load_state_dict(
                state_dict[self._ict_head_key], strict=strict)
225

226

Neel Kant's avatar
Neel Kant committed
227
class REALMBertModel(MegatronModule):
228
    def __init__(self, retriever):
Neel Kant's avatar
Neel Kant committed
229
230
        super(REALMBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
231
            num_tokentypes=1,
Neel Kant's avatar
Neel Kant committed
232
233
234
235
236
237
            add_binary_head=False,
            parallel_output=True
        )
        self.lm_model = BertModel(**bert_args)
        self._lm_key = 'realm_lm'

238
239
240
241
242
243
        self.retriever = retriever
        self._retriever_key = 'retriever'

    def forward(self, tokens, attention_mask):
        # [batch_size x 5 x seq_length]
        top5_block_tokens, top5_block_attention_mask = self.retriever.retrieve_evidence_blocks(tokens, attention_mask)
Neel Kant's avatar
Neel Kant committed
244
245
246
247
248
249
250
        batch_size = tokens.shape[0]

        seq_length = top5_block_tokens.shape[2]
        top5_block_tokens = torch.cuda.LongTensor(top5_block_tokens).reshape(-1, seq_length)
        top5_block_attention_mask = torch.cuda.LongTensor(top5_block_attention_mask).reshape(-1, seq_length)

        # [batch_size x 5 x embed_size]
Neel Kant's avatar
Neel Kant committed
251
252
        true_model = self.retriever.ict_model.module.module
        fresh_block_logits = true_model.embed_block(top5_block_tokens, top5_block_attention_mask).reshape(batch_size, 5, -1)
Neel Kant's avatar
Neel Kant committed
253
254

        # [batch_size x embed_size x 1]
Neel Kant's avatar
Neel Kant committed
255
        query_logits = true_model.embed_query(tokens, attention_mask).unsqueeze(2)
Neel Kant's avatar
Neel Kant committed
256

257
258

        # [batch_size x 5]
Neel Kant's avatar
Neel Kant committed
259
260
        fresh_block_scores = torch.matmul(fresh_block_logits, query_logits).squeeze()
        block_probs = F.softmax(fresh_block_scores, dim=1)
261

Neel Kant's avatar
Neel Kant committed
262
263
264
        # [batch_size * 5 x seq_length]
        tokens = torch.stack([tokens.unsqueeze(1)] * 5, dim=1).reshape(-1, seq_length)
        attention_mask = torch.stack([attention_mask.unsqueeze(1)] * 5, dim=1).reshape(-1, seq_length)
265

Neel Kant's avatar
Neel Kant committed
266
267
268
        # [batch_size * 5 x 2 * seq_length]
        all_tokens = torch.cat((tokens, top5_block_tokens), axis=1)
        all_attention_mask = torch.cat((attention_mask, top5_block_attention_mask), axis=1)
269
270
271
272
        all_token_types = torch.zeros(all_tokens.shape).type(torch.int64).cuda()

        # [batch_size x 5 x 2 * seq_length x vocab_size]
        lm_logits, _ = self.lm_model.forward(all_tokens, all_attention_mask, all_token_types)
Neel Kant's avatar
Neel Kant committed
273
        lm_logits = lm_logits.reshape(batch_size, 5, 2 * seq_length, -1)
274
275
276
277
278
279
280
281
282
283
        return lm_logits, block_probs

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._lm_key] = self.lm_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        return state_dict_
Neel Kant's avatar
Neel Kant committed
284
285
286


class REALMRetriever(MegatronModule):
Neel Kant's avatar
Neel Kant committed
287
    """Retriever which uses a pretrained ICTBertModel and a HashedIndex"""
Neel Kant's avatar
Neel Kant committed
288
    def __init__(self, ict_model, ict_dataset, block_data, hashed_index, top_k=5):
Neel Kant's avatar
Neel Kant committed
289
290
291
        super(REALMRetriever, self).__init__()
        self.ict_model = ict_model
        self.ict_dataset = ict_dataset
Neel Kant's avatar
Neel Kant committed
292
        self.block_data = block_data
Neel Kant's avatar
Neel Kant committed
293
        self.hashed_index = hashed_index
Neel Kant's avatar
Neel Kant committed
294
        self.top_k = top_k
Neel Kant's avatar
Neel Kant committed
295
296
297
298
299
300
301
302
303

    def retrieve_evidence_blocks_text(self, query_text):
        """Get the top k evidence blocks for query_text in text form"""
        print("-" * 100)
        print("Query: ", query_text)
        padless_max_len = self.ict_dataset.max_seq_length - 2
        query_tokens = self.ict_dataset.encode_text(query_text)[:padless_max_len]

        query_tokens, query_pad_mask = self.ict_dataset.concat_and_pad_tokens(query_tokens)
Neel Kant's avatar
Neel Kant committed
304
305
        query_tokens = torch.cuda.LongTensor(np.array(query_tokens).reshape(1, -1))
        query_pad_mask = torch.cuda.LongTensor(np.array(query_pad_mask).reshape(1, -1))
Neel Kant's avatar
Neel Kant committed
306

307
        top5_block_tokens, _ = self.retrieve_evidence_blocks(query_tokens, query_pad_mask)
Neel Kant's avatar
Neel Kant committed
308
        for i, block in enumerate(top5_block_tokens[0]):
309
            block_text = self.ict_dataset.decode_tokens(block)
Neel Kant's avatar
Neel Kant committed
310
            print('\n    > Block {}: {}'.format(i, block_text))
Neel Kant's avatar
Neel Kant committed
311

312
    def retrieve_evidence_blocks(self, query_tokens, query_pad_mask):
Neel Kant's avatar
Neel Kant committed
313
        """Embed blocks to be used in a forward pass"""
Neel Kant's avatar
Neel Kant committed
314
315
316
317
        with torch.no_grad():
            true_model = self.ict_model.module.module
            query_embeds = detach(true_model.embed_query(query_tokens, query_pad_mask))
        _, block_indices = self.hashed_index.search_mips_index(query_embeds, top_k=self.top_k, reconstruct=False)
318
        all_top5_tokens, all_top5_pad_masks = [], []
Neel Kant's avatar
Neel Kant committed
319
320
321
322
        for indices in block_indices:
            # [k x meta_dim]
            top5_metas = np.array([self.block_data.meta_data[idx] for idx in indices])
            top5_block_data = [self.ict_dataset.get_block(*block_meta) for block_meta in top5_metas]
Neel Kant's avatar
Neel Kant committed
323
            top5_tokens, top5_pad_masks = zip(*top5_block_data)
324
325
326
327

            all_top5_tokens.append(np.array(top5_tokens))
            all_top5_pad_masks.append(np.array(top5_pad_masks))

Neel Kant's avatar
Neel Kant committed
328
        # [batch_size x k x seq_length]
Neel Kant's avatar
Neel Kant committed
329
        return np.array(all_top5_tokens), np.array(all_top5_pad_masks)
Neel Kant's avatar
Neel Kant committed
330
331


332
class ICTBertModel(MegatronModule):
Neel Kant's avatar
Neel Kant committed
333
    """Bert-based module for Inverse Cloze task."""
334
335
    def __init__(self,
                 ict_head_size,
336
337
338
339
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_block_model=False):
340
341
        super(ICTBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
342
            num_tokentypes=num_tokentypes,
343
344
            add_binary_head=False,
            ict_head_size=ict_head_size,
Neel Kant's avatar
Neel Kant committed
345
346
            parallel_output=parallel_output
        )
Neel Kant's avatar
Neel Kant committed
347
        assert not (only_block_model and only_query_model)
348
349
        self.use_block_model = not only_query_model
        self.use_query_model = not only_block_model
350

351
352
353
354
        if self.use_query_model:
            # this model embeds (pseudo-)queries - Embed_input in the paper
            self.query_model = BertModel(**bert_args)
            self._query_key = 'question_model'
355

356
357
358
359
        if self.use_block_model:
            # this model embeds evidence blocks - Embed_doc in the paper
            self.block_model = BertModel(**bert_args)
            self._block_key = 'context_model'
360

Neel Kant's avatar
Neel Kant committed
361
    def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask, only_query=False, only_block=False):
Neel Kant's avatar
Neel Kant committed
362
        """Run a forward pass for each of the models and compute the similarity scores."""
Neel Kant's avatar
Neel Kant committed
363
364
365
366
367
368
369
370

        if only_query:
            return self.embed_query(query_tokens, query_attention_mask)

        if only_block:
            return self.embed_block(block_tokens, block_attention_mask)


371
372
373
374
375
376
377
378
379
380
        query_logits = self.embed_query(query_tokens, query_attention_mask)
        block_logits = self.embed_block(block_tokens, block_attention_mask)

        # [batch x embed] * [embed x batch]
        retrieval_scores = query_logits.matmul(torch.transpose(block_logits, 0, 1))
        return retrieval_scores

    def embed_query(self, query_tokens, query_attention_mask):
        """Embed a batch of tokens using the query model"""
        if self.use_query_model:
Neel Kant's avatar
Neel Kant committed
381
            query_types = torch.zeros(query_tokens.shape).type(torch.int64).cuda()
382
383
384
385
386
387
388
389
            query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
            return query_ict_logits
        else:
            raise ValueError("Cannot embed query without query model.")

    def embed_block(self, block_tokens, block_attention_mask):
        """Embed a batch of tokens using the block model"""
        if self.use_block_model:
Neel Kant's avatar
Neel Kant committed
390
            block_types = torch.zeros(block_tokens.shape).type(torch.int64).cuda()
391
392
393
394
            block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
            return block_ict_logits
        else:
            raise ValueError("Cannot embed block without block model.")
395

396
    def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
Neel Kant's avatar
Neel Kant committed
397
        """Save dict with state dicts of each of the models."""
398
        state_dict_ = {}
399
400
401
402
403
404
405
406
407
408
        if self.use_query_model:
            state_dict_[self._query_key] \
                = self.query_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        if self.use_block_model:
            state_dict_[self._block_key] \
                = self.block_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

409
410
411
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
Neel Kant's avatar
Neel Kant committed
412
        """Load the state dicts of each of the models"""
413
        if self.use_query_model:
Neel Kant's avatar
Neel Kant committed
414
            print("Loading ICT query model", flush=True)
415
416
417
418
            self.query_model.load_state_dict(
                state_dict[self._query_key], strict=strict)

        if self.use_block_model:
Neel Kant's avatar
Neel Kant committed
419
            print("Loading ICT block model", flush=True)
420
421
            self.block_model.load_state_dict(
                state_dict[self._block_key], strict=strict)