bert_model.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

Neel Kant's avatar
Neel Kant committed
18
import numpy as np
19
20
import torch

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from megatron.module import MegatronModule

from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .transformer import LayerNorm
from .utils import gelu
from .utils import get_linear_layer
from .utils import init_method_normal
from .utils import scaled_init_method_normal


def bert_attention_mask_func(attention_scores, attention_mask):
    attention_scores = attention_scores + attention_mask
    return attention_scores


def bert_extended_attention_mask(attention_mask, dtype):
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)
    # Since attention_mask is 1.0 for positions we want to attend and 0.0
    # for masked positions, this operation will create a tensor which is
    # 0.0 for positions we want to attend and -10000.0 for masked positions.
    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    # fp16 compatibility
    extended_attention_mask = extended_attention_mask.to(dtype=dtype)
    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

    return extended_attention_mask


def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids



class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
79
        parallel_output: whether output logits being distributed or not.
80
81
82
83
84
85
86
87
    """
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88
89
        self.bias.partition_dim = 0
        self.bias.stride = 1
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)


    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
        hidden_states = gelu(hidden_states)
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output



class BertModel(MegatronModule):
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
111
    def __init__(self, num_tokentypes=2, add_binary_head=True,
Neel Kant's avatar
Neel Kant committed
112
                 ict_head_size=None, parallel_output=True):
113
        super(BertModel, self).__init__()
Mohammad's avatar
Mohammad committed
114
        args = get_args()
115
116

        self.add_binary_head = add_binary_head
117
118
119
120
        self.ict_head_size = ict_head_size
        self.add_ict_head = ict_head_size is not None
        assert not (self.add_binary_head and self.add_ict_head)

121
        self.parallel_output = parallel_output
Mohammad's avatar
Mohammad committed
122
        init_method = init_method_normal(args.init_method_std)
123
        add_pooler = self.add_binary_head or self.add_ict_head
Mohammad's avatar
Mohammad committed
124
125
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
126
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
127
            attention_mask_func=bert_attention_mask_func,
128
            num_tokentypes=num_tokentypes,
129
            add_pooler=add_pooler,
130
            init_method=init_method,
Mohammad's avatar
Mohammad committed
131
            scaled_init_method=scaled_init_method)
132

Neel Kant's avatar
Neel Kant committed
133
134
135
        if not self.add_ict_head:
            self.lm_head = BertLMHead(
                self.language_model.embedding.word_embeddings.weight.size(0),
Neel Kant's avatar
Neel Kant committed
136
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
Neel Kant's avatar
Neel Kant committed
137
            self._lm_head_key = 'lm_head'
138
        if self.add_binary_head:
Mohammad's avatar
Mohammad committed
139
140
            self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                init_method)
141
            self._binary_head_key = 'binary_head'
142
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
143
            self.ict_head = get_linear_layer(args.hidden_size, ict_head_size, init_method)
144
            self._ict_head_key = 'ict_head'
145

146
    def forward(self, input_ids, attention_mask, tokentype_ids=None):
147
148
149
150
151

        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

152
        if self.add_binary_head or self.add_ict_head:
153
154
155
156
157
158
159
160
161
162
163
164
165
            lm_output, pooled_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)
        else:
            lm_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)

        # Output.
Neel Kant's avatar
Neel Kant committed
166
167
168
169
        if self.add_ict_head:
            ict_logits = self.ict_head(pooled_output)
            return ict_logits, None

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        lm_logits = self.lm_head(
            lm_output, self.language_model.embedding.word_embeddings.weight)
        if self.add_binary_head:
            binary_logits = self.binary_head(pooled_output)
            return lm_logits, binary_logits

        return lm_logits, None


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
188
189
190
191
        if not self.add_ict_head:
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
192
193
194
        if self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
195
196
197
        elif self.add_ict_head:
            state_dict_[self._ict_head_key] \
                = self.ict_head.state_dict(destination, prefix, keep_vars)
198
199
200
201
202
203
204
205
        return state_dict_


    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
206
207
208
        if not self.add_ict_head:
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
209
        if self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
210
211
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
212
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
213
214
            self.ict_head.load_state_dict(
                state_dict[self._ict_head_key], strict=strict)
215

216

Neel Kant's avatar
Neel Kant committed
217
218
219
220
# REALMBertModel is just BertModel without binary head.
# needs a different kind of dataset though


221
class ICTBertModel(MegatronModule):
Neel Kant's avatar
Neel Kant committed
222
    """Bert-based module for Inverse Cloze task."""
223
224
    def __init__(self,
                 ict_head_size,
Neel Kant's avatar
Neel Kant committed
225
                 num_tokentypes=2,
Neel Kant's avatar
Neel Kant committed
226
                 parallel_output=True):
227
228
        super(ICTBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
229
            num_tokentypes=num_tokentypes,
230
231
            add_binary_head=False,
            ict_head_size=ict_head_size,
Neel Kant's avatar
Neel Kant committed
232
233
            parallel_output=parallel_output
        )
234

Neel Kant's avatar
Neel Kant committed
235
236
237
        # this model embeds (pseudo-)queries - Embed_input in the paper
        self.query_model = BertModel(**bert_args)
        self._query_key = 'question_model'
238

Neel Kant's avatar
Neel Kant committed
239
240
241
        # this model embeds evidence blocks - Embed_doc in the paper
        self.block_model = BertModel(**bert_args)
        self._block_key = 'context_model'
242

Neel Kant's avatar
Neel Kant committed
243
244
245
    def forward(self, query_tokens, query_attention_mask, query_types,
                block_tokens, block_attention_mask, block_types):
        """Run a forward pass for each of the models and compute the similarity scores."""
246

Neel Kant's avatar
Neel Kant committed
247
248
        query_logits, _ = self.query_model.forward(query_tokens, 1 - query_attention_mask, query_types)
        block_logits, _ = self.block_model.forward(block_tokens, 1 - block_attention_mask, block_types)
Neel Kant's avatar
Neel Kant committed
249

Neel Kant's avatar
Neel Kant committed
250
        return query_logits, block_logits
Neel Kant's avatar
Neel Kant committed
251

252
253
    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
Neel Kant's avatar
Neel Kant committed
254
        """Save dict with state dicts of each of the models."""
255
        state_dict_ = {}
Neel Kant's avatar
Neel Kant committed
256
257
        state_dict_[self._query_key] \
            = self.query_model.state_dict_for_save_checkpoint(
258
            destination, prefix, keep_vars)
Neel Kant's avatar
Neel Kant committed
259
260
        state_dict_[self._block_key] \
            = self.block_model.state_dict_for_save_checkpoint(
261
262
263
264
            destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
Neel Kant's avatar
Neel Kant committed
265
266
267
268
269
        """Load the state dicts of each of the models"""
        self.query_model.load_state_dict(
            state_dict[self._query_key], strict=strict)
        self.block_model.load_state_dict(
            state_dict[self._block_key], strict=strict)