bert_model.py 16.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

18
19
import pickle

Neel Kant's avatar
Neel Kant committed
20
import numpy as np
21
import torch
22
import torch.nn.functional as F
23

Mohammad's avatar
Mohammad committed
24
from megatron import get_args
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from megatron.module import MegatronModule

from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .transformer import LayerNorm
from .utils import gelu
from .utils import get_linear_layer
from .utils import init_method_normal
from .utils import scaled_init_method_normal


def bert_attention_mask_func(attention_scores, attention_mask):
    attention_scores = attention_scores + attention_mask
    return attention_scores


def bert_extended_attention_mask(attention_mask, dtype):
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)
    # Since attention_mask is 1.0 for positions we want to attend and 0.0
    # for masked positions, this operation will create a tensor which is
    # 0.0 for positions we want to attend and -10000.0 for masked positions.
    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    # fp16 compatibility
    extended_attention_mask = extended_attention_mask.to(dtype=dtype)
    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

    return extended_attention_mask


def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids



class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
82
        parallel_output: whether output logits being distributed or not.
83
84
85
86
87
88
89
90
    """
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
91
92
        self.bias.partition_dim = 0
        self.bias.stride = 1
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)


    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
        hidden_states = gelu(hidden_states)
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output



class BertModel(MegatronModule):
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
114
    def __init__(self, num_tokentypes=2, add_binary_head=True,
Neel Kant's avatar
Neel Kant committed
115
                 ict_head_size=None, parallel_output=True):
116
        super(BertModel, self).__init__()
Mohammad's avatar
Mohammad committed
117
        args = get_args()
118
119

        self.add_binary_head = add_binary_head
120
121
122
123
        self.ict_head_size = ict_head_size
        self.add_ict_head = ict_head_size is not None
        assert not (self.add_binary_head and self.add_ict_head)

124
        self.parallel_output = parallel_output
Mohammad's avatar
Mohammad committed
125
        init_method = init_method_normal(args.init_method_std)
126
        add_pooler = self.add_binary_head or self.add_ict_head
Mohammad's avatar
Mohammad committed
127
128
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
129
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
130
            attention_mask_func=bert_attention_mask_func,
131
            num_tokentypes=num_tokentypes,
132
            add_pooler=add_pooler,
133
            init_method=init_method,
Mohammad's avatar
Mohammad committed
134
            scaled_init_method=scaled_init_method)
135

Neel Kant's avatar
Neel Kant committed
136
137
138
        if not self.add_ict_head:
            self.lm_head = BertLMHead(
                self.language_model.embedding.word_embeddings.weight.size(0),
Neel Kant's avatar
Neel Kant committed
139
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
Neel Kant's avatar
Neel Kant committed
140
            self._lm_head_key = 'lm_head'
141
        if self.add_binary_head:
Mohammad's avatar
Mohammad committed
142
143
            self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                init_method)
144
            self._binary_head_key = 'binary_head'
145
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
146
            self.ict_head = get_linear_layer(args.hidden_size, ict_head_size, init_method)
147
            self._ict_head_key = 'ict_head'
148

149
    def forward(self, input_ids, attention_mask, tokentype_ids=None):
150
151
152
153
154

        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

155
        if self.add_binary_head or self.add_ict_head:
156
157
158
159
160
161
162
163
164
165
166
167
168
            lm_output, pooled_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)
        else:
            lm_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)

        # Output.
Neel Kant's avatar
Neel Kant committed
169
170
171
172
        if self.add_ict_head:
            ict_logits = self.ict_head(pooled_output)
            return ict_logits, None

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        lm_logits = self.lm_head(
            lm_output, self.language_model.embedding.word_embeddings.weight)
        if self.add_binary_head:
            binary_logits = self.binary_head(pooled_output)
            return lm_logits, binary_logits

        return lm_logits, None


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
191
192
193
194
        if not self.add_ict_head:
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
195
196
197
        if self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
198
199
200
        elif self.add_ict_head:
            state_dict_[self._ict_head_key] \
                = self.ict_head.state_dict(destination, prefix, keep_vars)
201
202
203
204
205
206
207
208
        return state_dict_


    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
209
210
211
        if not self.add_ict_head:
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
212
        if self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
213
214
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
215
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
216
217
            self.ict_head.load_state_dict(
                state_dict[self._ict_head_key], strict=strict)
218

219

Neel Kant's avatar
Neel Kant committed
220
class REALMBertModel(MegatronModule):
221
    def __init__(self, retriever):
Neel Kant's avatar
Neel Kant committed
222
223
        super(REALMBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
224
            num_tokentypes=1,
Neel Kant's avatar
Neel Kant committed
225
226
227
228
229
230
            add_binary_head=False,
            parallel_output=True
        )
        self.lm_model = BertModel(**bert_args)
        self._lm_key = 'realm_lm'

231
232
233
234
235
236
        self.retriever = retriever
        self._retriever_key = 'retriever'

    def forward(self, tokens, attention_mask):
        # [batch_size x 5 x seq_length]
        top5_block_tokens, top5_block_attention_mask = self.retriever.retrieve_evidence_blocks(tokens, attention_mask)
Neel Kant's avatar
Neel Kant committed
237
238
239
240
241
242
243
244
245
246
247
248
        batch_size = tokens.shape[0]

        seq_length = top5_block_tokens.shape[2]
        top5_block_tokens = torch.cuda.LongTensor(top5_block_tokens).reshape(-1, seq_length)
        top5_block_attention_mask = torch.cuda.LongTensor(top5_block_attention_mask).reshape(-1, seq_length)

        # [batch_size x 5 x embed_size]
        fresh_block_logits = self.retriever.ict_model.module.module.embed_block(top5_block_tokens, top5_block_attention_mask).reshape(batch_size, 5, -1)

        # [batch_size x embed_size x 1]
        query_logits = self.retriever.ict_model.module.module.embed_query(tokens, attention_mask).unsqueeze(2)

249
250

        # [batch_size x 5]
Neel Kant's avatar
Neel Kant committed
251
252
        fresh_block_scores = torch.matmul(fresh_block_logits, query_logits).squeeze()
        block_probs = F.softmax(fresh_block_scores, dim=1)
253

Neel Kant's avatar
Neel Kant committed
254
255
256
        # [batch_size * 5 x seq_length]
        tokens = torch.stack([tokens.unsqueeze(1)] * 5, dim=1).reshape(-1, seq_length)
        attention_mask = torch.stack([attention_mask.unsqueeze(1)] * 5, dim=1).reshape(-1, seq_length)
257

Neel Kant's avatar
Neel Kant committed
258
259
260
        # [batch_size * 5 x 2 * seq_length]
        all_tokens = torch.cat((tokens, top5_block_tokens), axis=1)
        all_attention_mask = torch.cat((attention_mask, top5_block_attention_mask), axis=1)
261
262
263
264
        all_token_types = torch.zeros(all_tokens.shape).type(torch.int64).cuda()

        # [batch_size x 5 x 2 * seq_length x vocab_size]
        lm_logits, _ = self.lm_model.forward(all_tokens, all_attention_mask, all_token_types)
Neel Kant's avatar
Neel Kant committed
265
        lm_logits = lm_logits.reshape(batch_size, 5, 2 * seq_length, -1)
266
267
268
269
270
271
272
273
274
275
        return lm_logits, block_probs

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._lm_key] = self.lm_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        return state_dict_
Neel Kant's avatar
Neel Kant committed
276
277
278


class REALMRetriever(MegatronModule):
Neel Kant's avatar
Neel Kant committed
279
    """Retriever which uses a pretrained ICTBertModel and a HashedIndex"""
Neel Kant's avatar
Neel Kant committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def __init__(self, ict_model, ict_dataset, hashed_index, top_k=5):
        super(REALMRetriever, self).__init__()
        self.ict_model = ict_model
        self.ict_dataset = ict_dataset
        self.hashed_index = hashed_index

    def retrieve_evidence_blocks_text(self, query_text):
        """Get the top k evidence blocks for query_text in text form"""
        print("-" * 100)
        print("Query: ", query_text)
        padless_max_len = self.ict_dataset.max_seq_length - 2
        query_tokens = self.ict_dataset.encode_text(query_text)[:padless_max_len]

        query_tokens, query_pad_mask = self.ict_dataset.concat_and_pad_tokens(query_tokens)
Neel Kant's avatar
Neel Kant committed
294
295
        query_tokens = torch.cuda.LongTensor(np.array(query_tokens).reshape(1, -1))
        query_pad_mask = torch.cuda.LongTensor(np.array(query_pad_mask).reshape(1, -1))
Neel Kant's avatar
Neel Kant committed
296

297
        top5_block_tokens, _ = self.retrieve_evidence_blocks(query_tokens, query_pad_mask)
Neel Kant's avatar
Neel Kant committed
298
        for i, block in enumerate(top5_block_tokens[0]):
299
            block_text = self.ict_dataset.decode_tokens(block)
Neel Kant's avatar
Neel Kant committed
300
            print('\n    > Block {}: {}'.format(i, block_text))
Neel Kant's avatar
Neel Kant committed
301

302
303
304
    def retrieve_evidence_blocks(self, query_tokens, query_pad_mask):
        query_embeds = self.ict_model.module.module.embed_query(query_tokens, query_pad_mask)
        query_hashes = self.hashed_index.hash_embeds(query_embeds)
Neel Kant's avatar
Neel Kant committed
305

306
307
308
        block_buckets = [self.hashed_index.get_block_bucket(hash) for hash in query_hashes]
        block_embeds = [torch.cuda.HalfTensor(np.array([self.hashed_index.get_block_embed(arr[3])
                                                        for arr in bucket])) for bucket in block_buckets]
Neel Kant's avatar
Neel Kant committed
309

310
311
312
313
314
315
316
        all_top5_tokens, all_top5_pad_masks = [], []
        for query_embed, embed_tensor, bucket in zip(query_embeds, block_embeds, block_buckets):
            retrieval_scores = query_embed.matmul(torch.transpose(embed_tensor, 0, 1))
            top5_vals, top5_indices = torch.topk(retrieval_scores, k=5, sorted=True)

            top5_start_end_doc = [bucket[idx][:3] for idx in top5_indices.squeeze()]
            # top_k tuples of (block_tokens, block_pad_mask)
Neel Kant's avatar
Neel Kant committed
317
318
319
            top5_block_data = [self.ict_dataset.get_block(*indices) for indices in top5_start_end_doc]

            top5_tokens, top5_pad_masks = zip(*top5_block_data)
320
321
322
323

            all_top5_tokens.append(np.array(top5_tokens))
            all_top5_pad_masks.append(np.array(top5_pad_masks))

Neel Kant's avatar
Neel Kant committed
324
        # [batch_size x 5 x seq_length]
Neel Kant's avatar
Neel Kant committed
325
        return np.array(all_top5_tokens), np.array(all_top5_pad_masks)
Neel Kant's avatar
Neel Kant committed
326
327


328
class ICTBertModel(MegatronModule):
Neel Kant's avatar
Neel Kant committed
329
    """Bert-based module for Inverse Cloze task."""
330
331
    def __init__(self,
                 ict_head_size,
332
333
334
335
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_block_model=False):
336
337
        super(ICTBertModel, self).__init__()
        bert_args = dict(
Neel Kant's avatar
Neel Kant committed
338
            num_tokentypes=num_tokentypes,
339
340
            add_binary_head=False,
            ict_head_size=ict_head_size,
Neel Kant's avatar
Neel Kant committed
341
342
            parallel_output=parallel_output
        )
Neel Kant's avatar
Neel Kant committed
343
        assert not (only_block_model and only_query_model)
344
345
        self.use_block_model = not only_query_model
        self.use_query_model = not only_block_model
346

347
348
349
350
        if self.use_query_model:
            # this model embeds (pseudo-)queries - Embed_input in the paper
            self.query_model = BertModel(**bert_args)
            self._query_key = 'question_model'
351

352
353
354
355
        if self.use_block_model:
            # this model embeds evidence blocks - Embed_doc in the paper
            self.block_model = BertModel(**bert_args)
            self._block_key = 'context_model'
356

357
    def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask):
Neel Kant's avatar
Neel Kant committed
358
        """Run a forward pass for each of the models and compute the similarity scores."""
359
360
361
362
363
364
365
366
367
368
        query_logits = self.embed_query(query_tokens, query_attention_mask)
        block_logits = self.embed_block(block_tokens, block_attention_mask)

        # [batch x embed] * [embed x batch]
        retrieval_scores = query_logits.matmul(torch.transpose(block_logits, 0, 1))
        return retrieval_scores

    def embed_query(self, query_tokens, query_attention_mask):
        """Embed a batch of tokens using the query model"""
        if self.use_query_model:
Neel Kant's avatar
Neel Kant committed
369
            query_types = torch.zeros(query_tokens.shape).type(torch.int64).cuda()
370
371
372
373
374
375
376
377
            query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
            return query_ict_logits
        else:
            raise ValueError("Cannot embed query without query model.")

    def embed_block(self, block_tokens, block_attention_mask):
        """Embed a batch of tokens using the block model"""
        if self.use_block_model:
Neel Kant's avatar
Neel Kant committed
378
            block_types = torch.zeros(block_tokens.shape).type(torch.int64).cuda()
379
380
381
382
            block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
            return block_ict_logits
        else:
            raise ValueError("Cannot embed block without block model.")
383

384
    def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
Neel Kant's avatar
Neel Kant committed
385
        """Save dict with state dicts of each of the models."""
386
        state_dict_ = {}
387
388
389
390
391
392
393
394
395
396
        if self.use_query_model:
            state_dict_[self._query_key] \
                = self.query_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        if self.use_block_model:
            state_dict_[self._block_key] \
                = self.block_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

397
398
399
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
Neel Kant's avatar
Neel Kant committed
400
        """Load the state dicts of each of the models"""
401
402
403
404
405
406
407
        if self.use_query_model:
            self.query_model.load_state_dict(
                state_dict[self._query_key], strict=strict)

        if self.use_block_model:
            self.block_model.load_state_dict(
                state_dict[self._block_key], strict=strict)