training.py 20.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

25
from megatron import get_args, print_rank_0
Mohammad's avatar
Mohammad committed
26
27
from megatron import get_timers
from megatron import get_tensorboard_writer
28
from megatron import mpu
Mohammad's avatar
Mohammad committed
29
30
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
31
32
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
33
from megatron.initialize import initialize_megatron
34
35
36
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
37
from megatron.model.realm_model import ICTBertModel
38
from megatron.utils import check_adlr_autoresume_termination
39
from megatron.utils import make_data_loader
40
from megatron.utils import report_memory
41
42


43
def pretrain(train_valid_test_dataset_provider, model_provider,
44
             forward_step_func, extra_args_provider=None, args_defaults={}):
45
46
47
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
48
49
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
50
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
51
        4) train the modle using the forward_step_func.
52
53

    Arguments:
54
55
56
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
57
58
59
60
61
62
63
64
65
66
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
67
68
    """

69
    # Initalize and get arguments, timers, and Tensorboard writer.
70
71
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
72

73
    args = get_args()
Mohammad's avatar
Mohammad committed
74
    timers = get_timers()
75

76
77
78
79
80
    if args.rank == 0 and args.cased_data_path is not None:
        import stanza
        stanza.download('en', processors={'ner': 'conll03'}, dir='stanza')


81
    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
82
83
84
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
85
86

    # Data stuff.
87
88
89
90
91
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
Mohammad's avatar
Mohammad committed
92
93
94

    # Print setup timing.
    print_rank_0('done with setups ...')
95
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
96
    print_rank_0('training ...')
97
98

    iteration = 0
99
    if args.do_train and args.train_iters > 0:
100
101
        iteration, _ = train(forward_step_func,
                             model, optimizer, lr_scheduler,
Neel Kant's avatar
Neel Kant committed
102
                             train_data_iterator, valid_data_iterator)
Mohammad's avatar
Mohammad committed
103

104
105
106
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
107
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
108
                                   iteration, False)
109
110

    if args.save and iteration != 0:
111
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
112
113
114
115
116
117

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
118
                                   0, True)
119
120


Mohammad's avatar
Mohammad committed
121
def get_model(model_provider_func):
122
    """Build the model."""
Mohammad's avatar
Mohammad committed
123
    args = get_args()
124
125

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
126
    model = model_provider_func()
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training."""
    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
144
145
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
146
147
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
148
        model = LocalDDP(model)
149
150
        return model

151
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
152
                              'Exiting.'.format(args.DDP_impl))
153
154


Mohammad's avatar
Mohammad committed
155
def get_optimizer(model):
156
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
157
    args = get_args()
158
159

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
160
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
161
162
163
164
165
166
167
168
169
170
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

    # Use Adam.
Mohammad's avatar
Mohammad committed
171
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay)
172
173
174
175
176
177
178
179

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
180
                                       'min_scale': args.min_scale,
181
182
183
184
185
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
186
def get_learning_rate_scheduler(optimizer):
187
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
188
    args = get_args()
189
190
191
192
193
194
195

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
Mohammad's avatar
Mohammad committed
196
    init_step = 0
197
198
199
200
201
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
        start_lr=args.lr,
        warmup_iter=warmup_iter,
Mohammad's avatar
Mohammad committed
202
        total_iters=num_iters,
203
204
205
206
207
208
209
210
211
        decay_style=args.lr_decay_style,
        last_iter=init_step,
        min_lr=args.min_lr,
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
212
def setup_model_and_optimizer(model_provider_func):
213
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
214
    args = get_args()
215

Mohammad's avatar
Mohammad committed
216
217
218
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
219
220

    if args.load is not None:
221
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
222
223
224
    else:
        args.iteration = 0

225
226
    unwrapped_model = model.module.module
    if args.iteration == 0 and hasattr(unwrapped_model, 'init_state_dict_from_bert'):
227
        print("Initializing ICT from pretrained BERT model", flush=True)
228
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
229

230
231
232
    return model, optimizer, lr_scheduler


Mohammad's avatar
Mohammad committed
233
def backward_step(optimizer, model, loss):
234
    """Backward step."""
235
236
    # if args.rank == 0:
    #    torch.save(lick)
Mohammad's avatar
Mohammad committed
237
238
    args = get_args()
    timers = get_timers()
239
240

    # Backward pass.
241
    optimizer.zero_grad(set_grads_to_None=True)
242
243
244
245
246
247
248
249
250
251
252
    if args.fp16:
        optimizer.backward(loss, update_master_grads=False)
    else:
        loss.backward()

    # All-reduce if needed.
    if args.DDP_impl == 'local':
        timers('allreduce').start()
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
        timers('allreduce').stop()
253

254
255
256
    # Update master gradients.
    if args.fp16:
        optimizer.update_master_grads()
257

258
259
260
261
262
263
264
265
    # Clipping gradients helps prevent the exploding gradient.
    if args.clip_grad > 0:
        if not args.fp16:
            mpu.clip_grad_norm(model.parameters(), args.clip_grad)
        else:
            optimizer.clip_master_grads(args.clip_grad)


Mohammad's avatar
Mohammad committed
266
267
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
268
    """Single training step."""
Mohammad's avatar
Mohammad committed
269
270
    args = get_args()
    timers = get_timers()
271
272
273

    # Forward model for one step.
    timers('forward').start()
Mohammad's avatar
Mohammad committed
274
    loss, loss_reduced = forward_step_func(data_iterator, model)
275
276
    timers('forward').stop()

277
    # Calculate gradients, reduce across processes, and clip.
278
    timers('backward').start()
Mohammad's avatar
Mohammad committed
279
    backward_step(optimizer, model, loss)
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    timers('backward').stop()

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

    return loss_reduced, skipped_iter


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
297
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
Mohammad's avatar
Mohammad committed
298
299
300
301
302
                 loss_scale, report_memory_flag):
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
303
304
305
306
307
308
309

    # Update losses.
    for key in loss_dict:
        total_loss_dict[key] = total_loss_dict.get(key, 0.) + loss_dict[key]

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
310

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
    add_to_logging('forward')
    add_to_logging('backward')
    add_to_logging('allreduce')
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
        for key in total_loss_dict:
            avg = total_loss_dict[key].item() / args.log_interval
            log_string += ' {}: {:.6E} |'.format(key, avg)
            total_loss_dict[key] = 0.0
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
        print_rank_0(log_string)
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


358
def train(forward_step_func, model, optimizer, lr_scheduler,
359
          train_data_iterator, valid_data_iterator):
360
    """Train the model function."""
Mohammad's avatar
Mohammad committed
361
362
    args = get_args()
    timers = get_timers()
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration
    skipped_iters = 0

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
381
                                             lr_scheduler)
382
383
384
385
        skipped_iters += skipped_iter
        iteration += 1

        # Logging.
Mohammad's avatar
Mohammad committed
386
387
388
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
389
390
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
391
                                          iteration, loss_scale,
Mohammad's avatar
Mohammad committed
392
                                          report_memory_flag)
393
394

        # Autoresume
395
396
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
397
            check_adlr_autoresume_termination(iteration, model, optimizer,
398
                                              lr_scheduler)
399
400
401
402

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
403
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
404
405
406
407
408
409

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
410
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
411
                                       iteration, False)
412
413

        if args.exit_interval and iteration % args.exit_interval == 0:
414
            torch.distributed.barrier()
415
416
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
417
418
419
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
420
421
422
423

    return iteration, skipped_iters


Mohammad's avatar
Mohammad committed
424
def evaluate(forward_step_func, data_iterator, model, verbose=False):
425
    """Evaluation."""
Mohammad's avatar
Mohammad committed
426
    args = get_args()
427
428
429
430
431
432
433
434
435
436
437
438
439
440

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
            # Forward evaluation.
Mohammad's avatar
Mohammad committed
441
            _, loss_dict = forward_step_func(data_iterator, model)
442
443
444
            # Reduce across processes.
            for key in loss_dict:
                total_loss_dict[key] = total_loss_dict.get(key, 0.) + \
Neel Kant's avatar
Neel Kant committed
445
                    loss_dict[key]
446
447
448
449
450
451
452
453
454
455
456
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
        total_loss_dict[key] /= args.eval_iters

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
457
                               iteration, verbose=False):
458
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
459
460
461
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)


479
480
481
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
482
    args = get_args()
483

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
        # Rank, size, and global batch size.
        data_parallel_size = mpu.get_data_parallel_world_size()
        global_batch_size = args.batch_size * data_parallel_size

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_iters * global_batch_size,
                                      eval_iters * global_batch_size,
                                      test_iters * global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
        train_dataloader = make_data_loader(train_ds)
        valid_dataloader = make_data_loader(valid_ds)
        test_dataloader = make_data_loader(test_ds)

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Mohammad's avatar
Mohammad committed
532
    # Shift the start iterations.
533
534
    if train_dataloader is not None:
        train_dataloader.batch_sampler.start_iter = args.iteration % \
Neel Kant's avatar
Neel Kant committed
535
            len(train_dataloader)
Mohammad's avatar
Mohammad committed
536
        print_rank_0('setting training data start iteration to {}'.
537
538
                     format(train_dataloader.batch_sampler.start_iter))
    if valid_dataloader is not None:
Mohammad's avatar
Mohammad committed
539
        start_iter_val = (args.iteration // args.eval_interval) * \
Neel Kant's avatar
Neel Kant committed
540
            args.eval_iters
541
        valid_dataloader.batch_sampler.start_iter = start_iter_val % \
Neel Kant's avatar
Neel Kant committed
542
            len(valid_dataloader)
Mohammad's avatar
Mohammad committed
543
        print_rank_0('setting validation data start iteration to {}'.
544
                     format(valid_dataloader.batch_sampler.start_iter))
545

546
547
548
    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
549
550
551
    else:
        train_data_iterator = None

552
553
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
554
    else:
555
        valid_data_iterator = None
556

557
558
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
559
560
561
    else:
        test_data_iterator = None

562
    return train_data_iterator, valid_data_iterator, test_data_iterator