bert_model.py 12.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

import torch

Mohammad's avatar
Mohammad committed
20
from megatron import get_args
mohammad's avatar
mohammad committed
21
from megatron import mpu
22
23
24
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
from megatron.model.transformer import LayerNorm
25
from megatron.model.utils import openai_gelu, erf_gelu
26
27
28
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
29
30
from megatron.module import MegatronModule

Neel Kant's avatar
Neel Kant committed
31
def bert_attention_mask_func(attention_scores, attention_mask):
32
    attention_scores.masked_fill_(attention_mask, -10000.0)
Neel Kant's avatar
Neel Kant committed
33
34
    return attention_scores

35
def bert_extended_attention_mask(attention_mask):
Neel Kant's avatar
Neel Kant committed
36
37
38
39
40
41
42
43
44
45
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)

46
47
    # Convert attention mask to binary:
    extended_attention_mask = (extended_attention_mask < 0.5)
Neel Kant's avatar
Neel Kant committed
48

49
    return extended_attention_mask
Neel Kant's avatar
Neel Kant committed
50
51
52
53
54
55
56
57
58
59
60

def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


61
62
63
64
65
66
67
68
class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
69
        parallel_output: whether output logits being distributed or not.
70
    """
Neel Kant's avatar
Neel Kant committed
71

72
73
74
75
76
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

77
        args = get_args()
Neel Kant's avatar
Neel Kant committed
78

79
        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
80
        self.bias.tensor_model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
81
82
        self.bias.partition_dim = 0
        self.bias.stride = 1
83
84
85
86
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
87
88
89
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
90
        elif args.onnx_safe:
Boris Fomitchev's avatar
Boris Fomitchev committed
91
            self.gelu = erf_gelu
92
93
94

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
95
        hidden_states = self.gelu(hidden_states)
96
97
98
99
100
101
102
103
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def post_language_model_processing(lm_output, pooled_output,
                                   lm_head, binary_head,
                                   lm_labels,
                                   logit_weights,
                                   fp16_lm_cross_entropy):
    # Output.
    lm_logits = lm_head(
        lm_output, logit_weights)

    binary_logits = None
    if binary_head is not None:
        binary_logits = binary_head(pooled_output)

    if lm_labels is None:
        return lm_logits, binary_logits
    else:
        if fp16_lm_cross_entropy:
            assert lm_logits.dtype == torch.half
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels)
        else:
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(),
                                                       lm_labels)
        return lm_loss, binary_logits


class BertModelBase(MegatronModule):
130
131
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
132
    def __init__(self, num_tokentypes=2, add_binary_head=True,
133
                 parallel_output=True):
134
        super(BertModelBase, self).__init__()
Mohammad's avatar
Mohammad committed
135
        args = get_args()
136

mohammad's avatar
mohammad committed
137
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
138
139
        self.add_binary_head = add_binary_head
        self.parallel_output = parallel_output
140

Mohammad's avatar
Mohammad committed
141
142
143
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
Neel Kant's avatar
Neel Kant committed
144

145
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
146
            attention_mask_func=bert_attention_mask_func,
147
            num_tokentypes=num_tokentypes,
148
            add_pooler=self.add_binary_head,
149
            init_method=init_method,
150
            scaled_init_method=scaled_init_method)
151

152
153
154
155
156
157
158
159
160
161
162
        # Parameters are shared between the word embeddings layer, and the heads at
        # the end of the model. In a pipelined setup with more than one stage, the
        # initial embedding layer and the head are on different workers, so we do
        # the following:
        # 1. Create a second copy of word_embeddings on the last stage, with initial
        #    parameters of 0.0.
        # 2. Do an all-reduce between the first and last stage to ensure that the
        #    two copies of word_embeddings start off with the same parameter values.
        # 3. In the training loop, before an all-reduce between the grads of the two
        #    word_embeddings layers to ensure that every applied weight update is the
        #    same on both stages.
163
164
        if mpu.is_pipeline_last_stage():
            if not mpu.is_pipeline_first_stage():
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
                self._word_embeddings_for_head_key = 'word_embeddings_for_head'
                # If first and last stages are different, set word_embeddings
                # weights to 0 here, then copy first stage's weights using all_reduce
                # below.
                self.word_embeddings = mpu.VocabParallelEmbedding(
                    args.padded_vocab_size, args.hidden_size,
                    init_method=init_method_normal(args.init_method_std))
                self.word_embeddings.weight.data.fill_(0)

            self.lm_head = BertLMHead(
                self.word_embeddings_weight().size(0),
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
            self._lm_head_key = 'lm_head'
            self.binary_head = None
            if self.add_binary_head:
                self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                    init_method)
                self._binary_head_key = 'binary_head'
183
        # Ensure that first and last stages have the same initial parameter values.
184
        if mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage():
185
186
187
188
            torch.distributed.all_reduce(self.word_embeddings_weight().data,
                                         group=mpu.get_embedding_group())

    def word_embeddings_weight(self):
189
        if mpu.is_pipeline_first_stage():
190
            return self.language_model.embedding.word_embeddings.weight
191
        if mpu.is_pipeline_last_stage():
192
193
194
195
196
            return self.word_embeddings.weight
        raise Exception('word_embeddings_weight() should be '
                        'called for first and last stage only')

    def forward(self, bert_model_input, attention_mask,
mohammad's avatar
mohammad committed
197
                tokentype_ids=None, lm_labels=None):
198

199
        extended_attention_mask = bert_extended_attention_mask(attention_mask)
200
201

        kwargs = {}
202
        if mpu.is_pipeline_first_stage():
203
204
205
206
            input_ids = bert_model_input
            position_ids = bert_position_ids(input_ids)
            args = [input_ids, position_ids, extended_attention_mask]
            kwargs['tokentype_ids'] = tokentype_ids
207
        else:
208
209
            args = [bert_model_input, extended_attention_mask]
        lm_output = self.language_model(*args, **kwargs)
210
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
211
            lm_output, pooled_output = lm_output
mohammad's avatar
mohammad committed
212
        else:
213
214
            pooled_output = None

215
        if mpu.is_pipeline_last_stage():
216
217
218
219
220
221
222
            return post_language_model_processing(lm_output, pooled_output,
                                                  self.lm_head, self.binary_head,
                                                  lm_labels,
                                                  self.word_embeddings_weight(),
                                                  self.fp16_lm_cross_entropy)
        else:
            return lm_output
223
224
225
226
227
228
229
230
231
232


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
233
            destination, prefix, keep_vars)
234
        if mpu.is_pipeline_last_stage():
235
236
237
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
238
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
239
240
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
241
        # Save word_embeddings.
242
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
243
244
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(destination, prefix, keep_vars)
245
246
247
248
249
250
251
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
252
        if mpu.is_pipeline_last_stage():
253
254
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
255
        if mpu.is_pipeline_last_stage() and self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
256
257
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
258
        # Load word_embeddings.
259
        if mpu.is_pipeline_last_stage() and not mpu.is_pipeline_first_stage():
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)


class BertModel(BertModelBase):

    def __init__(self, num_tokentypes=2, add_binary_head=True,
                 parallel_output=True):
        super(BertModel, self).__init__(
            num_tokentypes=num_tokentypes,
            add_binary_head=add_binary_head,
            parallel_output=parallel_output)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None, lm_labels=None):
        return super(BertModel, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids,
            lm_labels=lm_labels)


class BertModelFirstStage(BertModelBase):

    def __init__(self, num_tokentypes=2):
        super(BertModelFirstStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None):
        return super(BertModelFirstStage, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids)


class BertModelIntermediateStage(BertModelBase):

    def __init__(self, num_tokentypes=2):
        super(BertModelIntermediateStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, hidden_state, attention_mask):
        return super(BertModelIntermediateStage, self).forward(
            hidden_state,
            attention_mask)


class BertModelLastStage(BertModelBase):

    def __init__(self, num_tokentypes=2, add_binary_head=True,
                 parallel_output=True):
        super(BertModelLastStage, self).__init__(
            num_tokentypes=num_tokentypes,
            add_binary_head=add_binary_head,
            parallel_output=parallel_output)

    def forward(self, hidden_state, attention_mask,
                lm_labels=None):
        return super(BertModelLastStage, self).forward(
            hidden_state,
            attention_mask,
            lm_labels=lm_labels)