bert_model.py 12.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

import torch

Mohammad's avatar
Mohammad committed
20
from megatron import get_args
mohammad's avatar
mohammad committed
21
from megatron import mpu
22
from megatron.model.language_model import Embedding
23
24
25
from megatron.model.language_model import parallel_lm_logits
from megatron.model.language_model import get_language_model
from megatron.model.transformer import LayerNorm
26
from megatron.model.utils import openai_gelu, erf_gelu
27
28
29
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.utils import scaled_init_method_normal
30
31
from megatron.module import MegatronModule

Neel Kant's avatar
Neel Kant committed
32
def bert_attention_mask_func(attention_scores, attention_mask):
33
    attention_scores.masked_fill_(attention_mask, -10000.0)
Neel Kant's avatar
Neel Kant committed
34
35
    return attention_scores

36
def bert_extended_attention_mask(attention_mask):
Neel Kant's avatar
Neel Kant committed
37
38
39
40
41
42
43
44
45
46
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)

47
48
    # Convert attention mask to binary:
    extended_attention_mask = (extended_attention_mask < 0.5)
Neel Kant's avatar
Neel Kant committed
49

50
    return extended_attention_mask
Neel Kant's avatar
Neel Kant committed
51
52
53
54
55
56
57
58
59
60
61

def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids


62
63
64
65
66
67
68
69
class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
70
        parallel_output: whether output logits being distributed or not.
71
    """
Neel Kant's avatar
Neel Kant committed
72

73
74
75
76
77
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

78
        args = get_args()
Neel Kant's avatar
Neel Kant committed
79

80
        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
81
        self.bias.intra_layer_model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
82
83
        self.bias.partition_dim = 0
        self.bias.stride = 1
84
85
86
87
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
88
89
90
        self.gelu = torch.nn.functional.gelu
        if args.openai_gelu:
            self.gelu = openai_gelu
91
        elif args.onnx_safe:
Boris Fomitchev's avatar
Boris Fomitchev committed
92
            self.gelu = erf_gelu
93
94
95

    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
96
        hidden_states = self.gelu(hidden_states)
97
98
99
100
101
102
103
104
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def post_language_model_processing(lm_output, pooled_output,
                                   lm_head, binary_head,
                                   lm_labels,
                                   logit_weights,
                                   fp16_lm_cross_entropy):
    # Output.
    lm_logits = lm_head(
        lm_output, logit_weights)

    binary_logits = None
    if binary_head is not None:
        binary_logits = binary_head(pooled_output)

    if lm_labels is None:
        return lm_logits, binary_logits
    else:
        if fp16_lm_cross_entropy:
            assert lm_logits.dtype == torch.half
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits, lm_labels)
        else:
            lm_loss = mpu.vocab_parallel_cross_entropy(lm_logits.float(),
                                                       lm_labels)
        return lm_loss, binary_logits


class BertModelBase(MegatronModule):
131
132
    """Bert Language model."""

Mohammad's avatar
Mohammad committed
133
    def __init__(self, num_tokentypes=2, add_binary_head=True,
134
                 parallel_output=True):
135
        super(BertModelBase, self).__init__()
Mohammad's avatar
Mohammad committed
136
        args = get_args()
137

mohammad's avatar
mohammad committed
138
        self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
139
140
        self.add_binary_head = add_binary_head
        self.parallel_output = parallel_output
141

Mohammad's avatar
Mohammad committed
142
143
144
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
Neel Kant's avatar
Neel Kant committed
145

146
        self.language_model, self._language_model_key = get_language_model(
Mohammad's avatar
Mohammad committed
147
            attention_mask_func=bert_attention_mask_func,
148
            num_tokentypes=num_tokentypes,
149
            add_pooler=self.add_binary_head,
150
            init_method=init_method,
151
            scaled_init_method=scaled_init_method)
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        if mpu.is_inter_layer_last_stage():
            if not mpu.is_inter_layer_first_stage():
                self._word_embeddings_for_head_key = 'word_embeddings_for_head'
                # If first and last stages are different, set word_embeddings
                # weights to 0 here, then copy first stage's weights using all_reduce
                # below.
                self.word_embeddings = mpu.VocabParallelEmbedding(
                    args.padded_vocab_size, args.hidden_size,
                    init_method=init_method_normal(args.init_method_std))
                self.word_embeddings.weight.data.fill_(0)

            self.lm_head = BertLMHead(
                self.word_embeddings_weight().size(0),
                args.hidden_size, init_method, args.layernorm_epsilon, parallel_output)
            self._lm_head_key = 'lm_head'
            self.binary_head = None
            if self.add_binary_head:
                self.binary_head = get_linear_layer(args.hidden_size, 2,
                                                    init_method)
                self._binary_head_key = 'binary_head'

        # Ensure that first and last stages have the same initial embedding weights.
        if mpu.is_inter_layer_first_stage() or mpu.is_inter_layer_last_stage():
            torch.distributed.all_reduce(self.word_embeddings_weight().data,
                                         group=mpu.get_embedding_group())

    def word_embeddings_weight(self):
        if mpu.is_inter_layer_first_stage():
            return self.language_model.embedding.word_embeddings.weight
        if mpu.is_inter_layer_last_stage():
            return self.word_embeddings.weight
        raise Exception('word_embeddings_weight() should be '
                        'called for first and last stage only')

    def forward(self, bert_model_input, attention_mask,
mohammad's avatar
mohammad committed
188
                tokentype_ids=None, lm_labels=None):
189

190
        extended_attention_mask = bert_extended_attention_mask(attention_mask)
191
192
193
194
195
196
197

        kwargs = {}
        if mpu.is_inter_layer_first_stage():
            input_ids = bert_model_input
            position_ids = bert_position_ids(input_ids)
            args = [input_ids, position_ids, extended_attention_mask]
            kwargs['tokentype_ids'] = tokentype_ids
198
        else:
199
200
201
202
            args = [bert_model_input, extended_attention_mask]
        lm_output = self.language_model(*args, **kwargs)
        if mpu.is_inter_layer_last_stage() and self.add_binary_head:
            lm_output, pooled_output = lm_output
mohammad's avatar
mohammad committed
203
        else:
204
205
206
207
208
209
210
211
212
213
            pooled_output = None

        if mpu.is_inter_layer_last_stage():
            return post_language_model_processing(lm_output, pooled_output,
                                                  self.lm_head, self.binary_head,
                                                  lm_labels,
                                                  self.word_embeddings_weight(),
                                                  self.fp16_lm_cross_entropy)
        else:
            return lm_output
214
215
216
217
218
219
220
221
222
223


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
224
            destination, prefix, keep_vars)
225
226
227
228
229
        if mpu.is_inter_layer_last_stage():
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
        if mpu.is_inter_layer_last_stage() and self.add_binary_head:
230
231
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
232
233
234
235
        # Save word_embeddings.
        if mpu.is_inter_layer_last_stage() and not mpu.is_inter_layer_first_stage():
            state_dict_[self._word_embeddings_for_head_key] \
                = self.word_embeddings.state_dict(destination, prefix, keep_vars)
236
237
238
239
240
241
242
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
243
244
245
246
        if mpu.is_inter_layer_last_stage():
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
        if mpu.is_inter_layer_last_stage() and self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
247
248
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        # Load word_embeddings.
        if mpu.is_inter_layer_last_stage() and not mpu.is_inter_layer_first_stage():
            self.word_embeddings.load_state_dict(
                state_dict[self._word_embeddings_for_head_key], strict=strict)


class BertModel(BertModelBase):

    def __init__(self, num_tokentypes=2, add_binary_head=True,
                 parallel_output=True):
        super(BertModel, self).__init__(
            num_tokentypes=num_tokentypes,
            add_binary_head=add_binary_head,
            parallel_output=parallel_output)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None, lm_labels=None):
        return super(BertModel, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids,
            lm_labels=lm_labels)


class BertModelFirstStage(BertModelBase):

    def __init__(self, num_tokentypes=2):
        super(BertModelFirstStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None):
        return super(BertModelFirstStage, self).forward(
            input_ids,
            attention_mask,
            tokentype_ids=tokentype_ids)


class BertModelIntermediateStage(BertModelBase):

    def __init__(self, num_tokentypes=2):
        super(BertModelIntermediateStage, self).__init__(
            num_tokentypes=num_tokentypes)

    def forward(self, hidden_state, attention_mask):
        return super(BertModelIntermediateStage, self).forward(
            hidden_state,
            attention_mask)


class BertModelLastStage(BertModelBase):

    def __init__(self, num_tokentypes=2, add_binary_head=True,
                 parallel_output=True):
        super(BertModelLastStage, self).__init__(
            num_tokentypes=num_tokentypes,
            add_binary_head=add_binary_head,
            parallel_output=parallel_output)

    def forward(self, hidden_state, attention_mask,
                lm_labels=None):
        return super(BertModelLastStage, self).forward(
            hidden_state,
            attention_mask,
            lm_labels=lm_labels)