"official/benchmark/resnet_ctl_imagenet_benchmark.py" did not exist on "23c0017fe88ea6e1c8aca26a2967b9853fd4a5d3"
schedules.py 28.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

Jared Casper's avatar
Jared Casper committed
31
32
33
34
35
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
36
37
38
39
40
41
42
            # >>>
            # from lutil import pax
            # pax({
            #     "num microbatches" : get_num_microbatches(),
            #     "pipeline size" : args.pipeline_model_parallel_size,
            # })
            # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
            # >>>
            # assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
            #     'number of microbatches is not divisible by pipeline-parallel ' \
            #     'size when using interleaved schedule'
            # assert get_num_microbatches() % \
            #     args.transformer_pipeline_model_parallel_size == 0, \
            #     'number of microbatches (%d) is not divisible by transformer-' \
            #     'pipeline-model-parallel-size (%d) when using interleaved ' \
            #     'schedule' % (
            #         get_num_microbatches(),
            #         args.transformer_pipeline_model_parallel_size,
            #     )
            assert get_num_microbatches() % \
                args.pipeline_model_parallel_size == 0, \
                'number of microbatches (%d) is not divisible by pipeline-' \
                'model-parallel-size (%d) when using interleaved schedule' % (
                    get_num_microbatches(),
                    args.pipeline_model_parallel_size,
                )
            # <<<
Jared Casper's avatar
Jared Casper committed
63
64
65
66
67
68
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

69
def free_output_tensor(output_tensors, deallocate_pipeline_outputs):
70
71
72
73
74
75
    '''Pseudo-free (i.e., set to scalar) the output tensor's '.data' field.

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
76
    if not deallocate_pipeline_outputs or output_tensors is None:
77
78
79
80
        return
    if isinstance(output_tensors, torch.Tensor):
        output_tensors = [output_tensors]
    for output_tensor in output_tensors:
81
82
        output_tensor.data = torch.cuda.FloatTensor([0])
        
83
def custom_backward(output, grad_output):
84
85
86
87
88
89
90
    '''Directly call C++ autograd engine.

    To make the 'free_output_tensor' (above) optimization work, the C++
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
    Variable._execution_engine.run_backward(
        tensors = (output,),
        grad_tensors = (grad_output,),
        keep_graph = False,
        create_graph = False,
        inputs = tuple(),
        allow_unreachable=True,
        accumulate_grad=True,
    )
Jared Casper's avatar
Jared Casper committed
117

118
def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
119
120
121
122
123
124
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
125
    args = get_args()
126
127
128
    timers = get_timers()

    timers('forward-compute').start()
129
130
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
131
132
133
134
135
136

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

137
    unwrapped_model.set_input_tensor(input_tensor)
138
    output_tensor, loss_func = forward_step_func(data_iterator, model)
139
    if mpu.is_pipeline_last_stage():
140
        output_tensor = loss_func(output_tensor)
141
142
143
144
145
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

146
147
148
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
149
150
151
152
153
154
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
155
156
157


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
158
159
160
161
162
163
164
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
165
166
167
168

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
169
170
171
172
173
174
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
175
176
177
178
179
180
181
182
183
184
185
186
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
187
188

    # Backward pass.
189
190
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
191
192
193
194
195
    if args.deallocate_pipeline_outputs:
        custom_backward(output_tensor[0], output_tensor_grad[0])
    else:
        torch.autograd.backward(output_tensor[0],
                                grad_tensors=output_tensor_grad[0])
196
197

    # Collect the grad of the input_tensor.
198
    input_tensor_grad = [None]
199
    if input_tensor is not None:
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
216
217
218
219
220
221

    timers('backward-compute').stop()

    return input_tensor_grad


222
223
224
225
226
227
228
229
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


230
231
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
232
233
234
235
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
236
237
238
    assert len(model) == 1
    model = model[0]

239
240
241
242
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

243
    losses_reduced = []
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
            output_tensor = forward_step(forward_step_func, data_iterator, model,
                                         input_tensor, losses_reduced)
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
    output_tensor = forward_step(forward_step_func, data_iterator, model,
                                 input_tensor, losses_reduced)
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
259
260
261
262
263
264

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
265
266
267
268
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
269
270
271
272
273
274
275
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
276
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
277

278
279
280
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

281
282
283
284
285
286
287
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
288
289
290
291
292
293
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
294
295
296
297
298
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
299
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
300
301
302
303
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
304
305
306
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

307
    def get_model_chunk_id(microbatch_id, forward):
308
        """Helper method to get the model chunk ID given the iteration number."""
309
310
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
311
        if not forward:
312
313
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
314

315
    def forward_step_helper(microbatch_id):
316
317
318
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
319
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
320
321
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

322
        # forward step
323
        if mpu.is_pipeline_first_stage():
324
325
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
326
327
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
328
329
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
330
331
332
333
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

334
335
336
337
338
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

339
340
        return output_tensor

341
    def backward_step_helper(microbatch_id):
342
343
344
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
345
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
346
347
348
349
350
351
352
353
354
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
355
356
357
358
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
359
360
361
362
363

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
364
    input_tensors[0].append(
365
        p2p_communication.recv_forward(tensor_shape, timers=timers))
366
367
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
368
369

        # Determine if tensor should be received from previous stage.
370
371
372
373
374
375
376
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
377
378

        # Don't send tensor downstream if on last stage.
379
380
        if mpu.is_pipeline_last_stage():
            output_tensor = None
381
382
383

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
384
385
386
387
388
389
390
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
391
                p2p_communication.send_forward_backward_recv_forward_backward(
392
393
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
394
                        tensor_shape=tensor_shape,
395
396
397
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
398
            input_tensor = \
399
                p2p_communication.send_forward_recv_forward(
400
401
402
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
403
        free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        input_tensors[next_forward_model_chunk_id].append(input_tensor)

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
442
443
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
444
445
446
447
448
449
450
451
452
453

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
454
455
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
456

457
458
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
459
460
461
462
463
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
464
            p2p_communication.send_forward_backward_recv_forward_backward(
465
466
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
467
                    tensor_shape=tensor_shape, timers=timers)
468
        free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
469

470
471
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
472
473
474
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
475
476
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
477

478
    # Run cooldown backward passes (flush out pipeline).
479
480
481
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
482
                p2p_communication.recv_backward(tensor_shape, timers=timers))
483
484
485
486
487
488
489
490
491
492
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
493
                p2p_communication.send_backward_recv_backward(
494
495
496
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
497
498
499
500

    return losses_reduced


501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
    if model_type == ModelType.encoder_and_decoder:
        if mpu.is_pipeline_stage_before_split(rank):
            # If next rank is after split, then need transpose for encoder_hidden_state.
            if mpu.is_pipeline_stage_before_split(rank+1):
                tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
            else:
                tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
        else:
            tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
    else:
        tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


595
596
597
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
598
599
600
601
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
602
    args = get_args()
603
604
    timers = get_timers()

605
606
607
608
609
610
611
612
613
614
615
616
617
618
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

619
620
621
622
623
624
625
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

626
627
628
629
630
631
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
632
633
634
635
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
636
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
637
638
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
639
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
640

641
642
643
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
644
            free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
645
646
647
648
649

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
650
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
651
652
653
654
655
656
657
658

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
659
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
660
661

            if not last_iteration:
662
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
663

664
        else:
665
            output_tensor_grad = \
666
667
668
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
669

670
671
672
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
673
            free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
674

675
676
677
678
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
679
680
681
682
683
684
685

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
686
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
687
            else:
688
                input_tensor = \
689
690
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
691
692
693
694
695
696
697

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

698
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
699
700
701
702
703

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

704
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
705
706

    return losses_reduced