language_model.py 21.9 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer based language model."""

import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import LayerType, AttnMaskType
Mohammad's avatar
Mohammad committed
25
26
from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import get_linear_layer
27
from megatron.model.utils import init_method_normal, scaled_init_method_normal
28

29

30
31
32
def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
                       bias=None):
    """LM logits using word embedding weights."""
33
    args = get_args()
34
    # Parallel logits.
35
    if args.async_tensor_model_parallel_allreduce or\
Vijay Korthikanti's avatar
Vijay Korthikanti committed
36
            args.sequence_parallel:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
37
        input_parallel = input_
38
39
        model_parallel = mpu.get_tensor_model_parallel_world_size() > 1
        async_grad_allreduce = args.async_tensor_model_parallel_allreduce and \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
40
            model_parallel and not args.sequence_parallel
41
    else:
42
43
44
        input_parallel = mpu.copy_to_tensor_model_parallel_region(input_)
        async_grad_allreduce = False

45
    # Matrix multiply.
46
47
48
    logits_parallel = mpu.LinearWithGradAccumulationAndAsyncCommunication.apply(
        input_parallel, word_embeddings_weight, bias,
        args.gradient_accumulation_fusion,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
        async_grad_allreduce, args.sequence_parallel)
50
    # Gather if needed.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
51

52
53
    if parallel_output:
        return logits_parallel
Mohammad's avatar
Mohammad committed
54

55
    return mpu.gather_from_tensor_model_parallel_region(logits_parallel)
Mohammad's avatar
Mohammad committed
56
57


58
def get_language_model(num_tokentypes, add_pooler,
59
                       encoder_attn_mask_type, init_method=None,
60
61
                       scaled_init_method=None, add_encoder=True,
                       add_decoder=False,
62
63
                       decoder_attn_mask_type=AttnMaskType.causal,
                       pre_process=True, post_process=True):
Mohammad's avatar
Mohammad committed
64
    """Build language model and return along with the key to save."""
65
    args = get_args()
Mohammad's avatar
Mohammad committed
66

67
68
69
70
    if init_method is None:
        init_method = init_method_normal(args.init_method_std)

    if scaled_init_method is None:
71
72
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
73

74
    # Language model.
75
76
77
78
79
    language_model = TransformerLanguageModel(
        init_method,
        scaled_init_method,
        encoder_attn_mask_type,
        num_tokentypes=num_tokentypes,
80
        add_encoder=add_encoder,
81
82
83
84
85
86
        add_decoder=add_decoder,
        decoder_attn_mask_type=decoder_attn_mask_type,
        add_pooler=add_pooler,
        pre_process=pre_process,
        post_process=post_process
    )
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    # key used for checkpoints.
    language_model_key = 'language_model'

    return language_model, language_model_key


class Pooler(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """
Neel Kant's avatar
Neel Kant committed
104

105
106
    def __init__(self, hidden_size, init_method):
        super(Pooler, self).__init__()
107
        args = get_args()
108
        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
109
110
        self.sequence_parallel = args.sequence_parallel

111
112

    def forward(self, hidden_states, sequence_index=0):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
113
        # hidden_states: [s, b, h]
114
        # sequence_index: index of the token to pool.
115
116
117
118

        # gather data along sequence dimensions
        # same pooler is run on all tensor parallel nodes
        if self.sequence_parallel:
119
120
            hidden_states = mpu.gather_from_sequence_parallel_region(
                hidden_states,
121
                tensor_parallel_output_grad=False)
122

Vijay Korthikanti's avatar
Vijay Korthikanti committed
123
        pooled = hidden_states[sequence_index, :, :]
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        pooled = self.dense(pooled)
        pooled = torch.tanh(pooled)
        return pooled


class Embedding(MegatronModule):
    """Language model embeddings.

    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
142

143
144
145
146
147
148
149
150
151
152
153
154
155
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 max_sequence_length,
                 embedding_dropout_prob,
                 init_method,
                 num_tokentypes=0):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

156
157
        args = get_args()

158
159
        # Word embeddings (parallel).
        self.word_embeddings = mpu.VocabParallelEmbedding(
160
161
            vocab_size, self.hidden_size,
            init_method=self.init_method)
162
163
164
165
166
167
168
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.position_embeddings = torch.nn.Embedding(
            max_sequence_length, self.hidden_size)
        self._position_embeddings_key = 'position_embeddings'
        # Initialize the position embeddings.
169
170
        if args.perform_initialization:
            self.init_method(self.position_embeddings.weight)
171
172
173
174
175
176
177
178
179
180

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
                                                           self.hidden_size)
            # Initialize the token-type embeddings.
181
182
            if args.perform_initialization:
                self.init_method(self.tokentype_embeddings.weight)
183
184
185
        else:
            self.tokentype_embeddings = None

186
        self.fp32_residual_connection = args.fp32_residual_connection 
Vijay Korthikanti's avatar
Vijay Korthikanti committed
187
        self.sequence_parallel = args.sequence_parallel
188
189
190
        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

191
192
193
    def zero_parameters(self):
        """Zero out all parameters in embedding."""
        self.word_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
194
        self.word_embeddings.weight.shared = True
195
        self.position_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
196
        self.position_embeddings.weight.shared = True
197
198
        if self.num_tokentypes > 0:
            self.tokentype_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
199
            self.tokentype_embeddings.weight.shared = True
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception('tokentype embeddings is already initialized')
        if torch.distributed.get_rank() == 0:
            print('adding embedding for {} tokentypes'.format(num_tokentypes),
                  flush=True)
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
                                                       self.hidden_size)
        # Initialize the token-type embeddings.
215
        args = get_args()
216
217
218
219
220
221
222
223
224
225
226
227
228
        self.init_method(self.tokentype_embeddings.weight)

    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = words_embeddings + position_embeddings
        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
        else:
            assert self.tokentype_embeddings is None

229
        # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
Vijay Korthikanti's avatar
Vijay Korthikanti committed
230
231
        embeddings = embeddings.transpose(0, 1).contiguous()

232
233
        # If the input flag for fp32 residual connection is set, convert for float.
        if self.fp32_residual_connection:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
234
            embeddings = embeddings.float()
235

236
        # Dropout.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
237
        if self.sequence_parallel:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
238
            embeddings = mpu.scatter_to_sequence_parallel_region(embeddings)
239
240
241
242
            with mpu.get_cuda_rng_tracker().fork():
                embeddings = self.embedding_dropout(embeddings)
        else:
            embeddings = self.embedding_dropout(embeddings)
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

        return embeddings

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._word_embeddings_key] \
            = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        state_dict_[self._position_embeddings_key] \
            = self.position_embeddings.state_dict(
                destination, prefix, keep_vars)
        if self.num_tokentypes > 0:
            state_dict_[self._tokentype_embeddings_key] \
                = self.tokentype_embeddings.state_dict(
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Word embedding.
        if self._word_embeddings_key in state_dict:
            state_dict_ = state_dict[self._word_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'word_embeddings' in key:
                    state_dict_[key.split('word_embeddings.')[1]] \
                        = state_dict[key]
        self.word_embeddings.load_state_dict(state_dict_, strict=strict)

        # Position embedding.
        if self._position_embeddings_key in state_dict:
            state_dict_ = state_dict[self._position_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'position_embeddings' in key:
                    state_dict_[key.split('position_embeddings.')[1]] \
                        = state_dict[key]
        self.position_embeddings.load_state_dict(state_dict_, strict=strict)

        # Tokentype embedding.
Neel Kant's avatar
Neel Kant committed
291
        if self.num_tokentypes > 0:
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
            state_dict_ = {}
            if self._tokentype_embeddings_key in state_dict:
                state_dict_ = state_dict[self._tokentype_embeddings_key]
            else:
                # for backward compatibility.
                for key in state_dict.keys():
                    if 'tokentype_embeddings' in key:
                        state_dict_[key.split('tokentype_embeddings.')[1]] \
                            = state_dict[key]
            if len(state_dict_.keys()) > 0:
                self.tokentype_embeddings.load_state_dict(state_dict_,
                                                          strict=strict)
            else:
                print('***WARNING*** expected tokentype embeddings in the '
                      'checkpoint but could not find it', flush=True)


309
class TransformerLanguageModel(MegatronModule):
310
311
312
313
314
315
316
317
318
319
320
    """Transformer language model.

    Arguments:
        transformer_hparams: transformer hyperparameters
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
321

322
    def __init__(self,
Mohammad's avatar
Mohammad committed
323
324
                 init_method,
                 output_layer_init_method,
325
                 encoder_attn_mask_type,
326
                 num_tokentypes=0,
327
                 add_encoder=True,
328
                 add_decoder=False,
329
                 decoder_attn_mask_type=AttnMaskType.causal,
330
331
332
333
                 add_pooler=False,
                 pre_process=True,
                 post_process=True):
        super(TransformerLanguageModel, self).__init__()
Mohammad's avatar
Mohammad committed
334
        args = get_args()
335

336
337
        self.pre_process = pre_process
        self.post_process = post_process
Mohammad's avatar
Mohammad committed
338
        self.hidden_size = args.hidden_size
339
        self.num_tokentypes = num_tokentypes
Mohammad's avatar
Mohammad committed
340
        self.init_method = init_method
341
        self.add_encoder = add_encoder
342
        self.encoder_attn_mask_type = encoder_attn_mask_type
343
        self.add_decoder = add_decoder
344
        self.decoder_attn_mask_type = decoder_attn_mask_type
345
        self.add_pooler = add_pooler
346
        self.encoder_hidden_state = None
347

348
        # Embeddings.
349
        if self.pre_process:
350
351
352
353
354
355
356
            self.embedding = Embedding(self.hidden_size,
                                       args.padded_vocab_size,
                                       args.max_position_embeddings,
                                       args.hidden_dropout,
                                       self.init_method,
                                       self.num_tokentypes)
            self._embedding_key = 'embedding'
357

358
        # Transformer.
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        # Encoder (usually set to True, False if part of an encoder-decoder
        # architecture and in encoder-only stage).
        if self.add_encoder:
            self.encoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                self_attn_mask_type=self.encoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process
            )
            self._encoder_key = 'encoder'
        else:
            self.encoder = None

        # Decoder (usually set to False, True if part of an encoder-decoder
        # architecture and in decoder-only stage).
Vijay Korthikanti's avatar
Vijay Korthikanti committed
375
376
377
378
379
        if self.add_decoder:
            self.decoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                layer_type=LayerType.decoder,
380
381
382
                self_attn_mask_type=self.decoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
383
            self._decoder_key = 'decoder'
384
385
        else:
            self.decoder = None
386

387
        if self.post_process:
388
389
390
391
392
            # Pooler.
            if self.add_pooler:
                self.pooler = Pooler(self.hidden_size, self.init_method)
                self._pooler_key = 'pooler'

393
    def set_input_tensor(self, input_tensor):
394
        """ See megatron.model.transformer.set_input_tensor()"""
395
396
397
398
399
400

        # This is usually handled in schedules.py but some inference code still
        # gives us non-lists or None
        if not isinstance(input_tensor, list):
            input_tensor = [input_tensor]

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        if self.add_encoder and self.add_decoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with both encoder and decoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_encoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with only encoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_decoder:
            if len(input_tensor) == 2:
                self.decoder.set_input_tensor(input_tensor[0])
                self.encoder_hidden_state = input_tensor[1]
            elif len(input_tensor) == 1:
                self.decoder.set_input_tensor(None)
                self.encoder_hidden_state = input_tensor[0]
            else:
                raise Exception('input_tensor must have either length 1 or 2')
        else:
            raise Exception('Stage must have at least either encoder or decoder')
420
421
422

    def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask,
                dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None,
423
                enc_dec_attn_mask=None, tokentype_ids=None,
mshoeybi's avatar
mshoeybi committed
424
                inference_params=None,
425
                pooling_sequence_index=0,
426
                enc_hidden_states=None, output_enc_hidden=False):
427

428
        # Encoder embedding.
429
        if self.pre_process:
430
431
            encoder_input = self.embedding(enc_input_ids, enc_position_ids,
                                           tokentype_ids=tokentype_ids)
432
        else:
433
            encoder_input = None
434

435
        # Run encoder.
436
        if enc_hidden_states is None:
437
            if self.encoder is not None:
438
439
440
                encoder_output = self.encoder(
                    encoder_input,
                    enc_attn_mask,
mshoeybi's avatar
mshoeybi committed
441
                    inference_params=inference_params)
442
443
            else:
                encoder_output = self.encoder_hidden_state
444
445
446
        else:
            encoder_output = enc_hidden_states.to(encoder_input.dtype)

447
        if self.post_process:
448
449
450
451
            if self.add_pooler:
                pooled_output = self.pooler(encoder_output,
                                            pooling_sequence_index)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
452
453
454
455
        # output_enc_hidden refers to when we just need the encoder's
        # output. For example, it is helpful to compute
        # similarity between two sequences by average pooling
        if not self.add_decoder or output_enc_hidden:
456
            if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
457
                return encoder_output, pooled_output
458
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
459
460
                return encoder_output

461
462
463
464
465
466
467
468
        # Decoder embedding.
        if self.pre_process:
            decoder_input = self.embedding(dec_input_ids,
                                           dec_position_ids)
        else:
            decoder_input = None

        # Run decoder.
469
        decoder_output = self.decoder(
470
            decoder_input,
471
472
473
            dec_attn_mask,
            encoder_output=encoder_output,
            enc_dec_attn_mask=enc_dec_attn_mask,
mshoeybi's avatar
mshoeybi committed
474
            inference_params=inference_params)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
475

476
        if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
477
478
479
            return decoder_output, encoder_output, pooled_output
        else:
            return decoder_output, encoder_output
480
481
482
483
484
485

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
486
        if self.pre_process:
487
488
489
            state_dict_[self._embedding_key] \
                = self.embedding.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
490
491
492
493
        if self.add_encoder:
            state_dict_[self._encoder_key] \
                = self.encoder.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
494
        if self.post_process:
495
496
497
498
            if self.add_pooler:
                state_dict_[self._pooler_key] \
                    = self.pooler.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)
499
500
501
        if self.add_decoder:
            state_dict_[self._decoder_key] \
                = self.decoder.state_dict_for_save_checkpoint(
502
503
504
505
506
507
508
509
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Embedding.
510
        if self.pre_process:
511
512
513
514
515
516
517
518
519
            if self._embedding_key in state_dict:
                state_dict_ = state_dict[self._embedding_key]
            else:
                # for backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if '_embeddings' in key:
                        state_dict_[key] = state_dict[key]
            self.embedding.load_state_dict(state_dict_, strict=strict)
520

521
        # Encoder.
522
523
524
525
526
527
        if self.add_encoder:
            if self._encoder_key in state_dict:
                state_dict_ = state_dict[self._encoder_key]
            # For backward compatibility.
            elif 'transformer' in state_dict:
                state_dict_ = state_dict['transformer']
528
            else:
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
                # For backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if 'transformer.' in key:
                        state_dict_[key.split('transformer.')[1]] = state_dict[key]

            # For backward compatibility.
            state_dict_self_attention = {}
            for key in state_dict_.keys():
                if '.attention.' in key:
                    state_dict_self_attention[key.replace(".attention.",
                        ".self_attention.")] = state_dict_[key]
                else:
                    state_dict_self_attention[key] = state_dict_[key]
            state_dict_ = state_dict_self_attention

            self.encoder.load_state_dict(state_dict_, strict=strict)

        # Pooler.
548
        if self.post_process:
549
550
551
552
553
            if self.add_pooler:
                assert 'pooler' in state_dict, \
                    'could not find data for pooler in the checkpoint'
                self.pooler.load_state_dict(state_dict[self._pooler_key],
                                            strict=strict)
554
        # Decoder.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
555
556
        if self.add_decoder:
            assert 'decoder' in state_dict, \
557
                'could not find data for pooler in the checkpoint'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
558
559
            self.decoder.load_state_dict(state_dict[self._decoder_key],
                                         strict=strict)